Microorganisms are widely used in various beneficial applications, including food, pest control, bioremediation, biodegradation, biofuel processes, and plant symbiosis and growth stimulation. This book provides an overview of the available methodology for safety assessments of microorganisms, including determination of their infectivity and whether they produce toxic or sensitizing substances. Also covered are the regulatory systems in risk assessment and management of microbial products, quarantine legislations, international treaties, the importance of public risk perception and risk reducti
Microorganisms for Sustainable Environment and Health covers hazardous pollutants released from natural as well as anthropogenic activities and implications on environmental and human health. This book serves as a valuable source of basic knowledge and recent developments in the clean technologies and pollution-associated diseases and abnormalities in the context of microorganisms. Focused on current solutions to various environmental problems in the field of bioremediation, it provides a detailed knowledge on the various types of toxic environmental pollutants discharged from different sources, their toxicological effects in environments, humans, animals and plants as well as their biodegradation and bioremediation approaches. This book helps environmental scientists and microbiologists learn about existing environmental problems and suggests ways to control or contain their effects by employing various treatment approaches. - Provides information on waste treatment approaches using microbes - Includes applications in biofuel and bioenergy production - Covers green belt development, hydroponics, phytoremediation, wetland treatment technology, and common effluent treatment plants (CETPs) - Discusses dissemination of antibiotic resistance among pathogenic microbes and strategies to combat multi-drug resistance (MDR)
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
This edited volume discusses the role of various microbial products in healthcare, environment and agriculture. Several microbial products are directly involved in solving major health problems, agricultural and environmental issues. In healthcare sector, microbes are used as anti-tumor compounds, antibiotics, anti-parasitic agents, enzyme inhibitors and immunosuppressive agents. Microbial products are also used to degrade xenobiotic compounds and bio-surfactants, for biodegradation process. In agriculture, microbial products are used to enhance nutrient uptake, to promote plant growth, or to control plant diseases. The book presents several such applications of microbes in the ecosystems. The chapters are contributed from across the globe and contain up-to-date information. This book is of interest to teachers, researchers, microbiologists and ecologists. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences.
This comprehensive edited book on microbial prospective discusses the innovative approaches and investigation strategies, as well as provides a broad spectrum of the cutting-edge research on the processing, properties and technological developments of microbial products and their applications. Microbes finds very important applications in our lives including industries and food processing. They are widely used in the fermentation of beverages, processing of dairy products, production of pharmaceuticals, chemicals, enzymes, proteins and biomaterials; conversion of biomass into fuel, fuel cell technology, health and environmental sectors. Some of these products are produced commercially, while others are potentially valuable in biotechnology. Microorganisms are considered invaluable in research as model organisms. This is a useful compilation for students and researchers in microbiology, biotechnology and chemical industries.
Microbial Services in Restoration Ecology describes the role of microbial resources and their beneficial services in soil fertility and restoration of degraded ecosystems. The role of microbial interactions with crop plants which benefit agricultural productivity is also discussed. The book also includes significant advances in microbial based bio-pesticide production and strategies for high-density bio-inoculant cultivation to improve stress survivability of crop plants. This work provides next-generation molecular technologies for exploring complex microbial secondary metabolites and metabolic regulation in viability of plant–microbe interactions. - Describes the role of microbial resources and their beneficial services in soil fertility and restoration of degraded ecosystems - Discusses the role of microbial interactions with crop plants and how it benefits of agricultural productivity - Includes significant advances in microbial based bio-pesticide production and strategies for high-density bio-inoculant cultivation to improve stress survivability of crop plants provides next-generation molecular technologies for exploring complex microbial secondary metabolites and metabolic regulation in viability of plant–microbe interactions
In agricultural education and research, the study of agricultural microbiology has undergone tremendous changes in the past few decades, leading to today’s scientific farming that is a backbone of economy all over the globe. Microorganisms in Sustainable Agriculture, Food, and the Environment fills the need for a comprehensive volume on recent advances and innovations in microbiology. The book is divided into four main parts: food microbiology; soil microbiology; environmental microbiology, and industrial microbiology and microbial biotechnology.
Crop Improvement through Microbial Biotechnology explains how certain techniques can be used to manipulate plant growth and development, focusing on the cross-kingdom transfer of genes to incorporate novel phenotypes in plants, including the utilization of microbes at every step, from cloning and characterization, to the production of a genetically engineered plant. This book covers microbial biotechnology in sustainable agriculture, aiming to improve crop productivity under stress conditions. It includes sections on genes encoding avirulence factors of bacteria and fungi, viral coat proteins of plant viruses, chitinase from fungi, virulence factors from nematodes and mycoplasma, insecticidal toxins from Bacillus thuringiensis, and herbicide tolerance enzymes from bacteria. - Introduces the principles of microbial biotechnology and its application in crop improvement - Lists various new developments in enhancing plant productivity and efficiency - Explains the mechanisms of plant/microbial interactions and the beneficial use of these interactions in crop improvement - Explores various bacteria classes and their beneficial effects in plant growth and efficiency
This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, might offer an alternative. They are natural, organic, biodegradable, eco-friendly and cost-effective. Further, the microbes present in the biofertilizers are important, because they produce nutrients required for plant growth (e.g., nitrogen, phosphorus, potassium), as well as substances essential for plant growth and development (e.g., auxins and cytokinins). Biofertilizers also improve the physical properties, fertility and productivity of soil, reducing the need for chemical fertilizers while maintaining high crop yield. This makes biofertilizers a powerful tool for sustainable agriculture and a sustainable environment. The book covers the latest research on biofertilizers, ranging from beneficial fungal, bacterial and algal inoculants; to microbes for bioremediation, wastewater treatment; and recycling of biodegradable municipal, agricultural and industrial waste; as well as biocontrol agents and bio-pesticides. As such, it offers a valuable resource for researchers, academics and students in the broad fields of microbiology and agriculture.