Much of this book consists of a review of the subject, in amended form, which the authors were commissioned to write by the EEC. It should be useful to those in the fields of materials science, physics, mechanical engineering, chemical engineering, metallurgy and aerospace engineering.
The main target of this book is to state the latest advancement in ceramic coatings technology in various industrial fields. The book includes topics related to the applications of ceramic coating covers in enginnering, including fabrication route (electrophoretic deposition and physical deposition) and applications in turbine parts, internal combustion engine, pigment, foundry, etc.
Much of this book consists of a review of the subject, in amended form, which the authors were commissioned to write by the EEC. It should be useful to those in the fields of materials science, physics, mechanical engineering, chemical engineering, metallurgy and aerospace engineering.
High Temperature Coatings, Second Edition, demonstrates how to counteract the thermal effects of rapid corrosion and degradation of exposed materials and equipment that can occur under high operating temperatures. This is the first true practical guide on the use of thermally protective coatings for high-temperature applications, including the latest developments in materials used for protective coatings. It covers the make-up and behavior of such materials under thermal stress and the methods used for applying them to specific types of substrates, as well as invaluable advice on inspection and repair of existing thermal coatings. With his long experience in the aerospace gas turbine industry, the author has compiled the very latest in coating materials and coating technologies, as well as hard-to-find guidance on maintaining and repairing thermal coatings, including appropriate inspection protocols. The book is supplemented with the latest reference information and additional support to help readers find more application- and industry-type coatings specifications and uses. - Offers an overview of the underlying fundamental concepts of thermally-protective coatings, including thermodynamics, energy kinetics, crystallography and equilibrium phases - Covers essential chemistry and physics of underlying substrates, including steels, nickel-iron alloys, nickel-cobalt alloys and titanium alloys - Provides detailed guidance on a wide variety of coating types, including those used against high temperature corrosion and oxidative degradation and thermal barrier coatings
This book assesses the state of the art of coatings materials and processes for gas-turbine blades and vanes, determines potential applications of coatings in high-temperature environments, identifies needs for improved coatings in terms of performance enhancements, design considerations, and fabrication processes, assesses durability of advanced coating systems in expected service environments, and discusses the required inspection, repair, and maintenance methods. The promising areas for research and development of materials and processes for improved coating systems and the approaches to increased coating standardization are identified, with an emphasis on materials and processes with the potential for improved performance, quality, reproducibility, or manufacturing cost reduction.
Thermal Barrier Coatings, Second Edition plays a critical role in counteracting the effects of corrosion and degradation of exposed materials in high-temperature environments such as gas turbine and aero-engines. This updated edition reviews recent advances in the processing and performance of thermal barrier coatings, as well as their failure mechanisms. Novel technologies for the manufacturing of thermal barrier coatings (TBCs) such as plasma spray-physical vapor deposition and suspension plasma spray, are covered, as well as severe degradation of TBCs caused by CMAS attack. In addition to discussions of new materials and technologies, an outlook about next generation TBCs, including T/EBCs is discussed.This edition will provide the fundamental science and engineering of thermal barrier coatings for researchers in the field of TBCs, as well as students looking for a tutorial. - Includes coverage of emerging materials, such as rare-earth doped ceramics - Presents the latest on plasma spray-physical vapor deposition and suspension (solution precursor) - Discusses the degradation of TBCs caused by CMAS attack and its protection - Looks at thermally environmental barrier coatings, interdiffusion and diffusion barrier
Ceramic materials in the form of coatings can significantly improve the functionality and applications of other engineering materials. Due to a wide range of controllable features and various deposition methods, it is possible to create tailored substrate–coating systems that meet the requirements of modern technologies. Therefore, it is crucial to understand the relationships between the structures, morphology and the properties of ceramic coatings and expand the base of scientific knowledge about them. This book contains a series of fourteen articles which present research on the production and properties of ceramic coatings designed to improve functionality for advanced applications.
Detailing the properties of specific coatings, problems related to adhesion onto various substrates, and potential commercial applications, this text surveys up-to-date techniques involved in preparing intermetallic and ceramic coatings. The book features a list of selected applications covering the latest industrially available practices.
This book examines exciting advancements in the field of ceramics, including nanotechnology, clean energy, and tribology as well as fundamental concepts like defects and structure. It is a comprehensive discussion on how today's ceramics are processed and used in many of today's critical technologies. It discusses current techniques for synthesizing durable and cost-effective ceramic components with biocompatibility, complexity, and high precision. This book is a comprehensive reference for researchers, engineers, dental clinicians, biologists, academics, and students interested in ceramics.
Surface engineering is an increasingly important field and consequently those involved need to be aware of the vast range of technologies available to modify surfaces. This text provides an up-to-date, authoritative exposition of the major condensed phase methods used for producing metallurgical and ceramic coatings. Each method is discussed thoroughly by an expert in that field. In each chapter the principle of the method, its range of applications and technical aspects involved are described. The book not only informs the reader about established technologies familiar only to specialists, but also details activity on the frontier of coating technology providing an insight into those potential technologies not yet fully developed but which should emerge in the near future.