Mechanics and Physics of Structured Media

Mechanics and Physics of Structured Media

Author: Igor Andrianov

Publisher: Academic Press

Published: 2022-01-20

Total Pages: 528

ISBN-13: 0323906532

DOWNLOAD EBOOK

Mechanics and Physics of Structured Media: Asymptotic and Integral Methods of Leonid Filshtinsky provides unique information on the macroscopic properties of various composite materials and the mathematical techniques key to understanding their physical behaviors. The book is centered around the arguably monumental work of Leonid Filshtinsky. His last works provide insight on fracture in electromagnetic-elastic systems alongside approaches for solving problems in mechanics of solid materials. Asymptotic methods, the method of complex potentials, wave mechanics, viscosity of suspensions, conductivity, vibration and buckling of functionally graded plates, and critical phenomena in various random systems are all covered at length. Other sections cover boundary value problems in fracture mechanics, two-phase model methods for heterogeneous nanomaterials, and the propagation of acoustic, electromagnetic, and elastic waves in a one-dimensional periodic two-component material. - Covers key issues around the mechanics of structured media, including modeling techniques, fracture mechanics in various composite materials, the fundamentals of integral equations, wave mechanics, and more - Discusses boundary value problems of materials, techniques for predicting elasticity of composites, and heterogeneous nanomaterials and their statistical description - Includes insights on asymptotic methods, wave mechanics, the mechanics of piezo-materials, and more - Applies homogenization concepts to various physical systems


Structure and Interpretation of Classical Mechanics, second edition

Structure and Interpretation of Classical Mechanics, second edition

Author: Gerald Jay Sussman

Publisher: MIT Press

Published: 2015-02-06

Total Pages: 580

ISBN-13: 0262028964

DOWNLOAD EBOOK

The new edition of a classic text that concentrates on developing general methods for studying the behavior of classical systems, with extensive use of computation. We now know that there is much more to classical mechanics than previously suspected. Derivations of the equations of motion, the focus of traditional presentations of mechanics, are just the beginning. This innovative textbook, now in its second edition, concentrates on developing general methods for studying the behavior of classical systems, whether or not they have a symbolic solution. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic. It weaves recent discoveries in nonlinear dynamics throughout the text, rather than presenting them as an afterthought. Explorations of phenomena such as the transition to chaos, nonlinear resonances, and resonance overlap to help the student develop appropriate analytic tools for understanding. The book uses computation to constrain notation, to capture and formalize methods, and for simulation and symbolic analysis. The requirement that the computer be able to interpret any expression provides the student with strict and immediate feedback about whether an expression is correctly formulated. This second edition has been updated throughout, with revisions that reflect insights gained by the authors from using the text every year at MIT. In addition, because of substantial software improvements, this edition provides algebraic proofs of more generality than those in the previous edition; this improvement permeates the new edition.


Micro-Macro-Interactions

Micro-Macro-Interactions

Author: Albrecht Bertram

Publisher: Springer Science & Business Media

Published: 2008-10-23

Total Pages: 301

ISBN-13: 354085715X

DOWNLOAD EBOOK

Many materials or media in nature and technology possess a microstructure which determines their macroscopic behaviour. The knowledge of the relevant mechanisms is often more comprehensive on the micro than on the macro scale. On the other hand, not all information on the micro level is relevant for the understanding of this macro behaviour. Therefore, averaging and homogenization methods are needed to select only the specific information from the micro scale, which influences the macro scale. These methods also open the possibility to design or to influence microstructures with the objective to optimize their macro behaviour. This book presents the development of new methods in this interdisciplinary field of macro- micro-interactions of different engineering branches like mechanical and process engineering, applied mathematics, theoretical, and computational physics. In particular, solids with microstructures and particle systems are considered.


Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems

Author: Sacha Friedli

Publisher: Cambridge University Press

Published: 2017-11-23

Total Pages: 643

ISBN-13: 1107184827

DOWNLOAD EBOOK

A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.


Mathematical Modelling of Waves in Multi-Scale Structured Media

Mathematical Modelling of Waves in Multi-Scale Structured Media

Author: Alexander B. Movchan

Publisher: CRC Press

Published: 2017-11-09

Total Pages: 317

ISBN-13: 1351651420

DOWNLOAD EBOOK

Mathematical Modelling of Waves in Multi-Scale Structured Media presents novel analytical and numerical models of waves in structured elastic media, with emphasis on the asymptotic analysis of phenomena such as dynamic anisotropy, localisation, filtering and polarisation as well as on the modelling of photonic, phononic, and platonic crystals.


Prediction and Simulation Methods for Geohazard Mitigation

Prediction and Simulation Methods for Geohazard Mitigation

Author: Fusao Oka

Publisher: CRC Press

Published: 2009-05-07

Total Pages: 626

ISBN-13: 0203871049

DOWNLOAD EBOOK

The last decades have shown a remarkable increase in the number of heavy rains, typhoons and earthquakes. These natural phenomena are the main causes for geohazards. As a result the mitigation of geohazards has become a major research topic in geotechnical engineering, and in recent years simulation-based predictions and monitoring tools have been


Asymptotical Mechanics of Composites

Asymptotical Mechanics of Composites

Author: Igor V. Andrianov

Publisher: Springer

Published: 2017-11-09

Total Pages: 333

ISBN-13: 3319657860

DOWNLOAD EBOOK

In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.


Homogenization Methods

Homogenization Methods

Author: Rainer Glüge

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-02-20

Total Pages: 198

ISBN-13: 3110793520

DOWNLOAD EBOOK

Almost all materials posses a microstructure, which cannot be accounted for in detail in structural engineering calculations. Instead, effective material properties are used. These are obtained by homogenization methods. This book provides


Micromechanics of Granular Materials

Micromechanics of Granular Materials

Author: Bernard Cambou

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 263

ISBN-13: 1118623088

DOWNLOAD EBOOK

Nearly all solids are compised of grains. However most studies treat materials as a continious solid. The book applies analysis used on loose granular materials to dense grainular materials. This title’s main focus is devoted to static or dynamic loadings applied to dense materials, although rapid flows and widely dispersed media are also mentioned briefly. Three essential areas are covered: Local variable analysis: Contact forces, displacements and rotations, orientation of contacting particles and fabric tensors are all examples of local variables. Their statistical distributions, such as spatial distribution and possible localization, are analyzed, taking into account experimental results or numerical simulations. Change of scales procedures: Also known as “homogenization techniques”, these procedures make it possible to construct continuum laws to be used in a continuum mechanics approach or performing smaller scale analyses. Numerical modeling: Several methods designed to calculate approximate solutions of dynamical equations together with unilateral contact and frictional laws are presented, including molecular dynamics, the distinct element method and non-smooth contact dynamics. Numerical examples are given and the quality of numerical approximations is discussed.