Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations

Author: C.M. Dafermos

Publisher: Elsevier

Published: 2004-08-24

Total Pages: 579

ISBN-13: 0080521827

DOWNLOAD EBOOK

This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous,and in depth surveys on the most important aspects of the present theory. The table of contents includes: W.Arendt: Semigroups and evolution equations: Calculus, regularity and kernel estimatesA.Bressan: The front tracking method for systems of conservation lawsE.DiBenedetto, J.M.Urbano,V.Vespri: Current issues on singular and degenerate evolution equations;L.Hsiao, S.Jiang: Nonlinear hyperbolic-parabolic coupled systemsA.Lunardi: Nonlinear parabolic equations and systemsD.Serre:L1-stability of nonlinear waves in scalar conservation laws B.Perthame:Kinetic formulations of parabolic and hyperbolic PDE's: from theory to numerics


Geometric Methods in PDE’s

Geometric Methods in PDE’s

Author: Giovanna Citti

Publisher: Springer

Published: 2015-10-31

Total Pages: 381

ISBN-13: 3319026666

DOWNLOAD EBOOK

The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.


Evolution Equations

Evolution Equations

Author: Gisele Ruiz Goldstein

Publisher: CRC Press

Published: 2003-06-24

Total Pages: 442

ISBN-13: 9780824709754

DOWNLOAD EBOOK

Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.


Degenerate Elliptic Equations

Degenerate Elliptic Equations

Author: Serge Levendorskii

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 442

ISBN-13: 9401712158

DOWNLOAD EBOOK

This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.


Degenerate Parabolic Equations

Degenerate Parabolic Equations

Author: Emmanuele DiBenedetto

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 402

ISBN-13: 1461208955

DOWNLOAD EBOOK

Evolved from the author's lectures at the University of Bonn's Institut für angewandte Mathematik, this book reviews recent progress toward understanding of the local structure of solutions of degenerate and singular parabolic partial differential equations.


Elliptic & Parabolic Equations

Elliptic & Parabolic Equations

Author: Zhuoqun Wu

Publisher: World Scientific

Published: 2006

Total Pages: 428

ISBN-13: 9812700250

DOWNLOAD EBOOK

This book provides an introduction to elliptic and parabolic equations. While there are numerous monographs focusing separately on each kind of equations, there are very few books treating these two kinds of equations in combination. This book presents the related basic theories and methods to enable readers to appreciate the commonalities between these two kinds of equations as well as contrast the similarities and differences between them.