Maximum-Entropy Sampling

Maximum-Entropy Sampling

Author: Marcia Fampa

Publisher: Springer Nature

Published: 2022-11-30

Total Pages: 206

ISBN-13: 3031130782

DOWNLOAD EBOOK

This monograph presents a comprehensive treatment of the maximum-entropy sampling problem (MESP), which is a fascinating topic at the intersection of mathematical optimization and data science. The text situates MESP in information theory, as the algorithmic problem of calculating a sub-vector of pre-specificed size from a multivariate Gaussian random vector, so as to maximize Shannon's differential entropy. The text collects and expands on state-of-the-art algorithms for MESP, and addresses its application in the field of environmental monitoring. While MESP is a central optimization problem in the theory of statistical designs (particularly in the area of spatial monitoring), this book largely focuses on the unique challenges of its algorithmic side. From the perspective of mathematical-optimization methodology, MESP is rather unique (a 0/1 nonlinear program having a nonseparable objective function), and the algorithmic techniques employed are highly non-standard. In particular, successful techniques come from several disparate areas within the field of mathematical optimization; for example: convex optimization and duality, semidefinite programming, Lagrangian relaxation, dynamic programming, approximation algorithms, 0/1 optimization (e.g., branch-and-bound), extended formulation, and many aspects of matrix theory. The book is mainly aimed at graduate students and researchers in mathematical optimization and data analytics.


Maximum-Entropy Networks

Maximum-Entropy Networks

Author: Tiziano Squartini

Publisher: Springer

Published: 2017-11-22

Total Pages: 125

ISBN-13: 3319694383

DOWNLOAD EBOOK

This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties. After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem of network reconstruction and introduces various advanced techniques to reliably infer the topology of a network from partial local information. Chapter 5 is devoted to the reformulation of certain “hard” combinatorial operations, such as the enumeration and unbiased sampling of graphs with given constraints, within a “softened” maximum-entropy framework. A final chapter offers various overarching remarks and take-home messages.By requiring no prior knowledge of network theory, the book targets a broad audience ranging from PhD students approaching these topics for the first time to senior researchers interested in the application of advanced network techniques to their field.


The Cross-Entropy Method

The Cross-Entropy Method

Author: Reuven Y. Rubinstein

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 316

ISBN-13: 1475743211

DOWNLOAD EBOOK

Rubinstein is the pioneer of the well-known score function and cross-entropy methods. Accessible to a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.


The Mathematical Theory of Communication

The Mathematical Theory of Communication

Author: Claude E Shannon

Publisher: University of Illinois Press

Published: 1998-09-01

Total Pages: 141

ISBN-13: 025209803X

DOWNLOAD EBOOK

Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.


Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Author: Adriano Polpo

Publisher: Springer

Published: 2018-07-14

Total Pages: 304

ISBN-13: 9783319911427

DOWNLOAD EBOOK

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.


Maximum Entropy and Ecology

Maximum Entropy and Ecology

Author: John Harte

Publisher: OUP Oxford

Published: 2011-06-23

Total Pages: 282

ISBN-13: 0191621161

DOWNLOAD EBOOK

This pioneering graduate textbook provides readers with the concepts and practical tools required to understand the maximum entropy principle, and apply it to an understanding of ecological patterns. Rather than building and combining mechanistic models of ecosystems, the approach is grounded in information theory and the logic of inference. Paralleling the derivation of thermodynamics from the maximum entropy principle, the state variable theory of ecology developed in this book predicts realistic forms for all metrics of ecology that describe patterns in the distribution, abundance, and energetics of species over multiple spatial scales, a wide range of habitats, and diverse taxonomic groups. The first part of the book is foundational, discussing the nature of theory, the relationship of ecology to other sciences, and the concept of the logic of inference. Subsequent sections present the fundamentals of macroecology and of maximum information entropy, starting from first principles. The core of the book integrates these fundamental principles, leading to the derivation and testing of the predictions of the maximum entropy theory of ecology (METE). A final section broadens the book's perspective by showing how METE can help clarify several major issues in conservation biology, placing it in context with other theories and highlighting avenues for future research.


Statistical Rethinking

Statistical Rethinking

Author: Richard McElreath

Publisher: CRC Press

Published: 2018-01-03

Total Pages: 488

ISBN-13: 1315362619

DOWNLOAD EBOOK

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.


Data Analysis

Data Analysis

Author: Devinderjit Sivia

Publisher: OUP Oxford

Published: 2006-06-02

Total Pages: 259

ISBN-13: 0191546704

DOWNLOAD EBOOK

One of the strengths of this book is the author's ability to motivate the use of Bayesian methods through simple yet effective examples. - Katie St. Clair MAA Reviews.


The Problem of Moments

The Problem of Moments

Author: James Alexander Shohat

Publisher: American Mathematical Soc.

Published: 1943-12-31

Total Pages: 160

ISBN-13: 0821815016

DOWNLOAD EBOOK

The book was first published in 1943 and then was reprinted several times with corrections. It presents the development of the classical problem of moments for the first 50 years, after its introduction by Stieltjes in the 1890s. In addition to initial developments by Stieltjes, Markov, and Chebyshev, later contributions by Hamburger, Nevanlinna, Hausdorff, Stone, and others are discussed. The book also contains some results on the trigonometric moment problem and a chapter devoted to approximate quadrature formulas.