This study covers the sequence information, three-dimensional structures, activation, protein substrates, specificity requirements, inhibition, and biological roles of identified MMPs.
Cutting-edge investigators review the current status of the entire field, from the biology of MMPs through the current clinical studies. The authors include many leading scientists from pharmaceutical companies who present all the latest concepts and results on the preferred design strategies for MMP inhibitors, their molecular mechanisms, and their substrates. In addition, they fully describe their personal research on specific MMP inhibitors, detailing vanguard design strategies, their in vitro activity, the outcome of animal model studies and, where available, their toxicology, safety, efficacy in human clinical trials. Comprehensive and state-of-the-art, Matrix Metalloproteinase Inhibitors in Cancer Therapy offers basic and clinical investigators alike a richly informative summary of all the latest research on these powerful new drugs, and their high promise as emerging cancer therapeutics.
Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the Biology of Extracellular Matrix series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease.
Discussing recent advances in the field of matrix metalloproteinase (MMP) research from a multidisciplinary perspective, Matrix Metalloproteinase Biologyis a collection of chapters written by leaders in the field of MMPs. The book focuses on the challenges of understanding the mechanisms substrate degradation by MMPs, as well as how these enzymes are able to degrade large, highly ordered substrates such as collagen. All topics addressed are considered in relation to disease progression including roles in cancer metastasis, rheumatoid arthritis and other inflammatory diseases. The text first provides an overview of MMPs, focusing on the history, the development and failures of small molecule inhibitors in clinical trials, and work with TIMPS, the endogenous inhibitors of MMPs. These introductory chapters establish the foundation for later discussion of the recent progress on the design of different types of inhibitors, including novel antibody based therapeutics. The following section emphasizes research using novel methods to further the study of the MMPs. The third and final section focuses on in vivo research, particularly with respect to cancer models, degradation of the extracellular matrix, and MMP involvement in other disease states. Written and edited by leaders in the field, Matrix Metalloproteinase Biology addresses the rapidly growth in MMP research, and will be an invaluable resource to advanced students and researchers studying cell and molecular biology.
Matrix Metalloproteinases and Tissue Remodeling in Health and Disease: Target Tissues and Therapy, Volume, Volume 148, the latest volume in the Progress in Molecular Biology and Translational Science series covers a variety of timely topics, with chapters focusing on The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs, Matrix Metalloproteinases in Kidney Disease: Role in Pathogenesis and Potential as a Therapeutic Target, Regulation of Matrix Metalloproteinase in the Pathogenesis of Diabetic Retinopathy, Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia, and Matrix Metalloproteinases, Neural Extracellular Matrix, and Central Nervous System Pathology. This volume is the second part of a thematic on matrix metalloproteinases and tissue remodeling in health and disease. It focuses on the role of MMPs in other systems, target tissues, and pathological disorders and the potential benefits of MMP inhibitors in various disorders. Serves as the second part of a thematic on matrix metalloproteinases and tissue remodeling in health and disease Focuses on cardiovascular remodeling Contains contributions from leading authorities on the topics Publishes cutting-edge reviews in molecular biology
Vascular Pharmacology: Cytoskeleton and Extracellular Matrix, Volume 81, contains the latest information on the vascular cytoskeleton and extracellular matrix that is presented with helpful illustrations and supporting references by prominent scientists and highly-recognized experts in the vascular field. Topics of interest in this new release include Pharmacology of the Vascular Cytoskeleton and Extracellular Matrix, The Dynamic Actin Cytoskeleton in Smooth Muscle, The Role of the Actin Cytoskeleton in the Regulation of Vascular Inflammation, The Smoothelin Family of Proteins and the Smooth Muscle Cell Contractile Apparatus, Smooth Muscle Cytoskeletal Network Regulates Expression of the Profibrotic Genes PAI-1 and CTGF, and more. - Presents a must-read book on the vascular cytoskeleton and extracellular matrix - Contains up-to-date information on the structure, function and development of the vascular cell cytoskeleton - Includes contributors from prominent scientists and highly-recognized experts with major accomplishments in the fields of the vascular cytoskeleton, extracellular matrix, mechanotransduction and vascular remodeling
The tetracyclines have an illustrious history as therapeutic agents which dates back over half a century. Initially discovered as an antibiotic in 1947, the four ringed molecule has captured the fancy of chemists and biologists over the ensuing decades. Of further interest, as described in the chapter by George Armelagos, tetracyclines were already part of earlier cultures, 1500-1700 years ago, as revealed in traces of drug found in Sudanese Nubian mummies. The diversity of chapters which this book presents to the reader should illus trate the many disciplines which have examined and seen benefits from these fascinating natural molecules. From antibacterial to anti-inflammatory to anti autoimmunity to gene regulation, tetracyclines have been modified and redesigned for various novel properties. Some have called this molecule a biol ogist's dream because of its versatility, but others have seen it as a chemist's nightmare because of the synthetic chemistry challenges and "chameleon-like" properties (see the chapter by S. Schneider).
Over the last decades cell biology and biological chemistry have increasingly turned their attention to the space between cells and revealed an elaborate network of macromolecules essential for structural support, cell adhesion and signaling. This comprehensive handbook of the extracellular matrix will give an overview of the current state of knowledge of matrix components (structure and function), their role in heath and disease (matrix pathobiology) and new aspects related to pharmacological targeting. It will provide an introduction to the extracellular matrix and detailed sections and chapters on: Importance of extracellular matrix in health and disease Matrix proteoglycans (aggrecan, versican, perlecan, SLRPs, syndecans, glypicans, serglycin) Matrix proteinases (remodeling, would healing, regulatory roles in health and disease, metalloproteinases, cystein proteases, plasmin and plasminogen activator system) Glycobiology (hyaluronan and sulfated glycosaminoglycans in cancer, inflammation and metabolic control) Collagens (supramolecular assembly, proteins binding collagen, scaffolds, bacterial and mutated collagens, procollagen proteinases) Cell surface receptors (integrins, syndecans, mechanical strain and TGFb, CD44 and DDR). Biotechnological and pharmacological outlook (matrix regulation by growth factors, hyaluronidases, pathobiology, disease targeting, delivery systems, EMT and proteomics). "The book Extracellular Matrix: Pathobiology and Signaling provides a comprehensive and up to date collection of very relevant topics for understanding the various facets of extracellular matrix and its interactions with cells in normal tissue as well as in disease. It represents the current front-line and will serve as a reference for extracellular matrix and posttranslational modifications." Dick Heinegård, Department of Clinical Sciences Lund, Section Rheumatology, Lund University, Sweden
Of the many special roles played by proteolytic enzymes in immune reactions, this book addresses different aspects of membrane peptidases, signal transduction via ligation of membrane peptidases (especially of dipeptidyl peptidase IV/CD26 and aminopeptidase N/CD13), and regulation of membrane peptidases in vivo and in vitro. A number of newly discovered peptidases (including cathepsin F, W and X, carboxypeptidase X, attractin) are described, with special emphasis given to the role of peptidases in immune and defense reactions and in the pathogenesis of inflammatory and other diseases, including rheumatoid arthritis, pancreatitis, multiple sclerosis, Alzheimer's disease and tumours of various origins. The focus on the involvement of a selection of proteolytic enzymes in immune reactions and diseases is a unique feature of this multifaceted work , which combines biochemical, immunological and clinical research reports with literary reviews of the field.