Presents the Dirichlet problem for harmonic functions twice: once using the Poisson integral for the unit disk and again in an informal section on Brownian motion, where the reader can understand intuitively how the Dirichlet problem works for general domains. This book is suitable for a first-year course in complex analysis
Math is more accessible than ever with this handy guide to essential concepts. Using step-by-step instructions, handy illustrations, and engaging explanations, Math Made Simple communicates one of the toughest subjects to a new generation of students. This colorful guide covers key topics taught in schools, and also inspires readers to dive further into the fascinating world of mathematics. Ten chapters cover the fundamental topics in mathematics, including statistics, measurements, and algebra. In addition, each chapter contains short quizzes, allowing readers to test their progress. This guide will develop readers’ ability to solve problems and gain insight into how much mathematics shapes the world around them.
Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and content of the book covers C.S.E. and 'O' level G.C.E. examinations in Applied Mathematics and Mechanics as well as the relevant parts of the syllabuses for Physics and General Science courses related to Engineering, Building, and Agriculture. The book is also written for the home study reader who is interested in widening his mathematical appreciation or simply reviving forgotten ideas. The author hopes that the style of presentation will be found sufficiently attractive to recapture those who may at one time have lost interest.
A Simplified Approach For Beginners& Can you multiply 231072 by 110649 and get the answer in just a single line? Can you find the cube root of 262144 or 704969 in two seconds? Can you predict the birth-date of a person without him telling you? Can you predict how much money a person has without him telling you? Can you check the final answer without solving the question? Or, in a special case, get the final answer without looking at the question? Can you solve squares, square roots, cube-roots and other problems mentally?All this and a lot more is possible with the techniques of Vedic Mathematics described in this book. The techniques are useful for students, professionals and businessmen. The techniques of Vedic Mathematics have helped millions of students all over the world get rid of their fear of numbers and improve their scores in quantitative subjects. Primary and secondary school students have found the Vedic mathematics approach very exciting. Those giving competitive exams like MBA, MCA, CET, UPSC, GRE, GMAT etc. have asserted that Vedic Mathematics has helped them crack the entrance tests of these exams.
For almost four decades, Made Simple books have set the standard for continuing education and home study. In answer to the changing needsof today's marketplace, the Made Simple series for the '90s presents a thoroughly up-to-the-minute portfolio of skills, information, and experience, with revised and updated editions of bestselling titles, plus a whole range of new subjects from personal finance to office management to desktop publishing. B & W illustrations throughout
Teacher Guide for Book 1 of the Principles of Mathematics - Biblical Worldview Curriculum for junior high! Math is a real-life tool that points us to God and helps us explore His creation, yet it often comes across as dry facts and meaningless rules. Here at last is a curriculum that has a biblical worldview integrated throughout the text and problems, not just added as an afterthought. The resources in the Teacher Guide will help students master and apply the skills learned in the Student Textbook. What does this Teacher Guide include? Worksheets, Quizzes, and Tests: These perforated, three-hole punched pages help provide practice on the principles taught in the main student textbook.Answer Keys: The answers are included for the worksheets, quizzes, and tests found in this Teacher Guide.Schedule: A suggested calendar schedule is provided for completing the material in one year, though this can be adapted to meet individual student needs. There is also an accelerated schedule for completing the material in one semester. Are there any prerequisites for this course? This curriculum is aimed at grades 6-8, fitting into most math approaches the year or two years prior to starting high school algebra. If following traditional grade levels, Book 1 should be completed in grade 6 or 7, and Book 2 in grade 7 or 8. In Book 1 students should have a basic knowledge of arithmetic (basic arithmetic will be reviewed, but at a fast pace and while teaching problem-solving skills and a biblical worldview of math) and sufficient mental development to think through the concepts and examples given. Typically, anyone in sixth grade or higher should be prepared to begin. The focus of the course is actually learning math for life, not simply preparing to pass a test.
Is it possible to make mathematical drawings that help to understand mathematical ideas, proofs, and arguments? The [Author];s of this book are convinced that the answer is yes and the objective of this book is to show how some visualization techniques may be employed to produce pictures that have both mathematical and pedagogical interest. Mathematical drawings related to proofs have been produced since antiquity in China, Arabia, Greece, and India, but only in the last thirty years has there been a growing interest in so-called ``proofs without words''. Hundreds of these have been published in Mathematics Magazine and The College Mathematics Journal, as well as in other journals, books, and on the internet. Often a person encountering a ``proof without words'' may have the feeling that the pictures involved are the result of a serendipitous discovery or the consequence of an exceptional ingenuity on the part of the picture's creator. In this book, the [Author];s show that behind most of the pictures, ``proving'' mathematical relations are some well-understood methods. As the reader shall see, a given mathematical idea or relation may have many different images that justify it, so that depending on the teaching level or the objectives for producing the pictures, one can choose the best alternative.
Popular Mechanics inspires, instructs and influences readers to help them master the modern world. Whether it’s practical DIY home-improvement tips, gadgets and digital technology, information on the newest cars or the latest breakthroughs in science -- PM is the ultimate guide to our high-tech lifestyle.
"Few of us really appreciate the full power of math--the extent to which its influence is not only in every office and every home, but also in every courtroom and hospital ward. In this ... book, Kit Yates explores the true stories of life-changing events in which the application--or misapplication--of mathematics has played a critical role: patients crippled by faulty genes and entrepreneurs bankrupted by faulty algorithms; innocent victims of miscarriages of justice; and the unwitting victims of software glitches"--Publisher marketing.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography