Mathematical Modelling in Biomedicine

Mathematical Modelling in Biomedicine

Author: Y. Cherruault

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 273

ISBN-13: 9400954921

DOWNLOAD EBOOK

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.


Mathematical Modelling in Biomedicine

Mathematical Modelling in Biomedicine

Author: Y. Cherruault

Publisher: Springer Science & Business Media

Published: 1986-02-28

Total Pages: 286

ISBN-13: 9789027721495

DOWNLOAD EBOOK

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.


Mathematical Methods and Models in Biomedicine

Mathematical Methods and Models in Biomedicine

Author: Urszula Ledzewicz

Publisher: Springer Science & Business Media

Published: 2012-10-20

Total Pages: 426

ISBN-13: 1461441781

DOWNLOAD EBOOK

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.


Mathematical Modelling in Biomedicine

Mathematical Modelling in Biomedicine

Author: Vitaly Volpert

Publisher: MDPI

Published: 2021-01-26

Total Pages: 224

ISBN-13: 3039434934

DOWNLOAD EBOOK

Mathematical modelling in biomedicine is a rapidly developing scientific discipline at the intersection of medicine, biology, mathematics, physics, and computer science. Its progress is stimulated by fundamental scientific questions and by the applications to public health. This book represents a collection of papers devoted to mathematical modelling of various physiological problems in normal and pathological conditions. It covers a broad range of topics including cardiovascular system and diseases, heart and brain modelling, tumor growth, viral infections, and immune response. Computational models of blood circulation are used to study the influence of heart arrhythmias on coronary blood flow and on operating modes for left-ventricle-assisted devices. Wave propagation in the cardiac tissue is investigated in order to show the influence of tissue heterogeneity and fibrosis. The models of tumor growth are used to determine optimal protocols of antiangiogenic and radiotherapy. The models of viral hepatitis kinetics are considered for the parameter identification, and the evolution of viral quasi-species is investigated. The book presents the state-of-the-art in mathematical modelling in biomedicine and opens new perspectives in this passionate field of research.


Modeling in Computational Biology and Biomedicine

Modeling in Computational Biology and Biomedicine

Author: Frédéric Cazals

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 333

ISBN-13: 364231208X

DOWNLOAD EBOOK

Computational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines. Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience.


Mathematical Modeling of Biological Systems, Volume I

Mathematical Modeling of Biological Systems, Volume I

Author: Andreas Deutsch

Publisher: Springer Science & Business Media

Published: 2007-07-16

Total Pages: 408

ISBN-13:

DOWNLOAD EBOOK

This edited volume contains a selection of chapters that are an outgrowth of the - ropean Conference on Mathematical and Theoretical Biology (ECMTB05, Dresden, Germany, July 2005). The peer-reviewed contributions show that mathematical and computational approaches are absolutely essential for solving central problems in the life sciences, ranging from the organizational level of individual cells to the dynamics of whole populations. The contributions indicate that theoretical and mathematical biology is a diverse and interdisciplinary ?eld, ranging from experimental research linked to mathema- cal modeling to the development of more abstract mathematical frameworks in which observations about the real world can be interpreted, and with which new hypotheses for testing can be generated. Today, much attention is also paid to the development of ef?cient algorithms for complex computation and visualisation, notably in molecular biology and genetics. The ?eld of theoretical and mathematical biology and medicine has profound connections to many current problems of great relevance to society. The medical, industrial, and social interests in its development are in fact indisputable.


Single-Cell-Based Models in Biology and Medicine

Single-Cell-Based Models in Biology and Medicine

Author: Alexander Anderson

Publisher: Springer Science & Business Media

Published: 2007-08-08

Total Pages: 346

ISBN-13: 376438123X

DOWNLOAD EBOOK

Aimed at postgraduate students in a variety of biology-related disciplines, this volume presents a collection of mathematical and computational single-cell-based models and their application. The main sections cover four general model groupings: hybrid cellular automata, cellular potts, lattice-free cells, and viscoelastic cells. Each section is introduced by a discussion of the applicability of the particular modelling approach and its advantages and disadvantages, which will make the book suitable for students starting research in mathematical biology as well as scientists modelling multicellular processes.


Mathematical Models in Biology

Mathematical Models in Biology

Author: Leah Edelstein-Keshet

Publisher: SIAM

Published: 1988-01-01

Total Pages: 629

ISBN-13: 9780898719147

DOWNLOAD EBOOK

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.


Modelling Methodology for Physiology and Medicine

Modelling Methodology for Physiology and Medicine

Author: Ewart Carson

Publisher: Elsevier

Published: 2000-12-31

Total Pages: 437

ISBN-13: 0080511902

DOWNLOAD EBOOK

Modelling Methodology for Physiology and Medicine offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modelling methodology that is widely applicable to physiology and medicine. The book opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. - Builds upon and enhances the readers existing knowledge of modelling methodology and practice - Editors are internationally renowned leaders in their respective fields


Systems Biomedicine

Systems Biomedicine

Author: Edison T. Liu

Publisher: Academic Press

Published: 2009-09-17

Total Pages: 450

ISBN-13: 0080919839

DOWNLOAD EBOOK

Systems biology is a critical emerging field that quantifies and annotates the complexity of biological systems in order to construct algorithmic models to predict outcomes from component input. Applications in medicine are revolutionizing our understanding of biological processes and systems. Systems Biomedicine is organized around foundations, computational modeling, network biology, and integrative biology, with the extension of examples from human biology and pharmacology, to focus on the applications of systems approaches to medical problems. An integrative approach to the underlying genomic, proteomic, and computational biology principles provides researchers with guidance in the use of qualitative systems and hypothesis generators. To reflect the highly interdisciplinary nature of the field, careful detail has been extended to ensure explanations of complex mathematical and biological principles are clear with minimum technical jargon. - Organized to reflect the important distinguishing characteristics of systems strategies in experimental biology and medicine - Provides precise and comprehensive measurement tools for constructing a model of the system and tools for defining complexity as an experimental dependent variable - Includes a thorough discussion of the applications of quantitative principles to biomedical problems