This introductory text is intended to provide undergraduate engineering students with the background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials selection in design. A computer diskette is included.
Building on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts.
An Introduction to Materials Engineering and Science for Chemical and Materials Engineers provides a solid background in materials engineering and science for chemical and materials engineering students. This book: Organizes topics on two levels; by engineering subject area and by materials class. Incorporates instructional objectives, active-learning principles, design-oriented problems, and web-based information and visualization to provide a unique educational experience for the student. Provides a foundation for understanding the structure and properties of materials such as ceramics/glass, polymers, composites, bio-materials, as well as metals and alloys. Takes an integrated approach to the subject, rather than a "metals first" approach.
For courses in Metallurgy and Materials Science. This introduction to engineering materials theory and industry-standard selection practices provides students with the working knowledge to (1) make an informed selection of materials for engineering applications and (2) correctly specify materials on drawings and purchasing documents.
New engineering materials, techniques and applications are constantly being researched and developed, and keeping up to speed with the latest advances is crucial for engineers if they are to successfully address the challenges they face in their work. This book presents the selected proceedings of MMSE2023, the 9th International Conference on Advances in Machinery, Materials Science and Engineering Applications, jointly organized by the SAE-Supmeca, France and China University of Geosciences (Wuhan) and held on 22 and 23 July 2023 in Wuhan, China. For the past 12 years, this annual conference has collated recent advances and experiences, identified emerging trends and provided a platform for participants from academia and industry to exchange information and views, helping to address the world’s machinery and engineering challenges. The book contains 4 sections: mechanical engineering, material science and manufacturing technology; electrical engineering, automation and control; modeling, simulation and optimization techniques in engineering; and advanced engineering technologies and applications. A total of 241 submissions were received for MMSE2023, of which 151 papers were selected for the conference and for publication by means of a rigorous international peer-review process. These papers present exciting ideas and methods that will open novel research directions for different communities. Offering a current overview of the latest research and applications in machinery and materials-science engineering, the book will be of interest to all those working in the field.
Food Materials Science and Engineering covers a comprehensive range of topics in relation to food materials, their properties and characterisation techniques, thus offering a new approach to understanding food production and quality control. The opening chapter will define the scope and application of food materials science, explaining the relationship between raw material structure and processing and quality in the final product. Subsequent chapters will examine the structure of food materials and how they relate to quality, sensory perception, processing attributes and nutrient delivery. The authors also address applications of nanotechnology to food and packaging science. Methods of manufacturing food systems with improved shelf-life and quality attributes will be highlighted in the book.
In this new edition of their classic work on Cellular Solids, the authors have brought the book completely up to date, including new work on processing of metallic and ceramic foams and on the mechanical, electrical and acoustic properties of cellular solids. Data for commercially available foams are presented on material property charts; two new case studies show how the charts are used for selection of foams in engineering design. Over 150 references appearing in the literature since the publication of the first edition are cited. The text summarises current understanding of the structure and mechanical behaviour of cellular materials, and the ways in which they can be exploited in engineering design. Cellular solids include engineering honeycombs and foams (which can now be made from polymers, metals, ceramics and composites) as well as natural materials, such as wood, cork and cancellous bone.
June 12-14, 2017 Rome, Italy Key Topics : Materials Science and Engineering, Nanomaterials and Nanotechnology, Biomaterials and Medical Devices, Polymer Science and Technology, Electronic, Optical and Magnetic Materials, Emerging Smart Materials, Materials for Energy and Environmental Sustainability, Metals, Mettalurgy and Materials, Physics and Cemistry of Materials, Mechanics, Characterization Techniques and Equipments, Ceramics and Composite Materials, Entrepreneurs Investment Meet,
Selected, peer reviewed papers from the 2014 International Conference on Materials Science and Engineering Technology (MSET 2014), June 28-29, 2014, Shanghai, China