Magnetic Domains

Magnetic Domains

Author: Alex Hubert

Publisher: Springer Science & Business Media

Published: 2008-10-10

Total Pages: 707

ISBN-13: 3540850546

DOWNLOAD EBOOK

This book offers systematic and up-to-date treatment of the whole area of magnetic domains. It contains many contributions that have not been published before. The comprehensive survey of this important area gives a good introduction to students and is also interesting to researchers.


Handbook of Magnetism and Magnetic Materials

Handbook of Magnetism and Magnetic Materials

Author: Michael Coey

Publisher: Springer

Published: 2021-11-19

Total Pages: 1679

ISBN-13: 9783030632083

DOWNLOAD EBOOK

This handbook presents a comprehensive survey of magnetism and magnetic materials. The dramatic advances in information technology and electromagnetic engineering make it necessary to systematically review the approved key knowledge and summarize the state of the art in this vast field within one seminal reference work. The book thus delivers up-to-date and well-structured information on a wealth of topics encompassing all fundamental aspects of the underlying physics and materials science, as well as advanced experimental methodology and applications. It features coverage of the host of fascinating and complex phenomena that arise from the use of magnetic fields in e.g. chemistry and biology. Edited by two internationally renowned scholars and featuring authored chapters from leading experts in the field, Springer’s Handbook of Magnetism and Magnetic Materials is an invaluable source of essential reference information for a broad audience of students, researchers, and magnetism professionals.


Observation of Magnetic Domains by Means of the Bitter Colloid Method

Observation of Magnetic Domains by Means of the Bitter Colloid Method

Author: Robert J. Patton

Publisher:

Published: 1963

Total Pages: 36

ISBN-13:

DOWNLOAD EBOOK

Experimental equipment was developed for the light-microscopic observation of ferromagnetic domains by means of the Bitter technique. The design of an electromagnet-miroscope stage which can accommodate both bulk samples and thin sheet strips is described. The formula for the preparation of the colloidal iron-oxide solution is given. Photographs of domains on silicon-iron transformer sheet illustrate the quality of the pictures and the resolution which can be obtained with the set-up.


Magneto-Optical Imaging

Magneto-Optical Imaging

Author: Tom H. Johansen

Publisher: Springer Science & Business Media

Published: 2004-05-31

Total Pages: 374

ISBN-13: 9781402019982

DOWNLOAD EBOOK

Magneto-Optical Imaging has developed rapidly over the last decade to emerge as a leading technique to directly visualise the static and dynamic magnetic behaviour of materials, capable of following magnetic processes on the scale of centimeters to sub-microns and at timescales from hours to nanoseconds. The images are direct, real-time, and give space-resolved information, such as ultrafast magnetic processes and revealing the motion of individual vortices in superconductors. The book is a fully up-to-date report of the present status of the technique.


Magnetic Material for Motor Drive Systems

Magnetic Material for Motor Drive Systems

Author: Keisuke Fujisaki

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 431

ISBN-13: 9813299061

DOWNLOAD EBOOK

This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.


Vortex Electronics and SQUIDs

Vortex Electronics and SQUIDs

Author: Takeshi Kobayashi

Publisher: Springer Science & Business Media

Published: 2003-12-08

Total Pages: 330

ISBN-13: 9783540402312

DOWNLOAD EBOOK

Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.


Domains in Ferroic Crystals and Thin Films

Domains in Ferroic Crystals and Thin Films

Author: Alexander Tagantsev

Publisher: Springer Science & Business Media

Published: 2011-03-02

Total Pages: 828

ISBN-13: 1441914226

DOWNLOAD EBOOK

At present, the marketplace for professionals, researchers, and graduate students in solid-state physics and materials science lacks a book that presents a comprehensive discussion of ferroelectrics and related materials in a form that is suitable for experimentalists and engineers. This book proposes to present a wide coverage of domain-related issues concerning these materials. This coverage includes selected theoretical topics (which are covered in the existing literature) in addition to a plethora of experimental data which occupies over half of the book. The book presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observations of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. "Domains in Ferroic Crystals and Thin Films" covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In other textbooks on solid state physics, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In contrast, "Domains in Ferroic Crystals and Thin Films" concentrates on domain-related phenomena in nonmagnetic ferroics. These materials are still inadequately represented in solid state physics textbooks and monographs.


Handbook of Microscopy for Nanotechnology

Handbook of Microscopy for Nanotechnology

Author: Nan Yao

Publisher: Springer Science & Business Media

Published: 2005-03-21

Total Pages: 772

ISBN-13: 9781402080036

DOWNLOAD EBOOK

Nanostructured materials take on an enormously rich variety of properties and promise exciting new advances in micromechanical, electronic, and magnetic devices as well as in molecular fabrications. The structure-composition-processing-property relationships for these sub 100 nm-sized materials can only be understood by employing an array of modern microscopy and microanalysis tools. Handbook of Microscopy for Nanotechnology aims to provide an overview of the basics and applications of various microscopy techniques for nanotechnology. This handbook highlights various key microcopic techniques and their applications in this fast-growing field. Topics to be covered include the following: scanning near field optical microscopy, confocal optical microscopy, atomic force microscopy, magnetic force microscopy, scanning turning microscopy, high-resolution scanning electron microscopy, orientational imaging microscopy, high-resolution transmission electron microscopy, scanning transmission electron microscopy, environmental transmission electron microscopy, quantitative electron diffraction, Lorentz microscopy, electron holography, 3-D transmission electron microscopy, high-spatial resolution quantitative microanalysis, electron-energy-loss spectroscopy and spectral imaging, focused ion beam, secondary ion microscopy, and field ion microscopy.


Microstructural Analysis

Microstructural Analysis

Author: J. McCall

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 1461586933

DOWNLOAD EBOOK

During recent years, people involved in developing new metals and materials for use in some of the rather extreme conditions of stress, temperature, and environment have relied heavily on the microstructural condition of their materials. In fact, many of the newer materials, such as dispersion-strengthened alloys, have been designed almost entirely by first determining the microstruc ture desired and then finding the right combination of composition, heat treatment, and mechanical working that will result in the de sired microstructure. Furthermore, the extremely high reliability required of materials used today, for example, in aerospace and nuclear energy systems, requires close control on the microstruc tural conditions of materials. This is clearly evident from even a cursory examination of recently written specifications for mate rials where rather precise microstructural parameters are stipu lated. Whereas specifications written several years ago may have included microstructural requirements for details such as ASTM grain size or graphite type, today's specifications are beginning to include such things as volume fraction of phases, mean free path of particles, and grain intercept distances. Rather arbitrary terms such as "medium pearlite" have been replaced by requirements such as "interlamella spacing not to exceed 0. 1 micron. " Finally, materials users have become increasingly aware that when a material does fail, the reason for its failure may be found by examining and "reading" its microstructure. The responsibility for a particular microstructure and a resulting failure is a matter of growing importance in current product liability consider ations.