Littlewood-Paley Theory and the Study of Function Spaces

Littlewood-Paley Theory and the Study of Function Spaces

Author: Michael Frazier

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 142

ISBN-13: 0821807315

DOWNLOAD EBOOK

Littlewood-Paley theory was developed to study function spaces in harmonic analysis and partial differential equations. Recently, it has contributed to the development of the *q-transform and wavelet decompositions. Based on lectures presented at the NSF-CBMS Regional Research Conference on Harmonic Analysis and Function Spaces, held at Auburn University in July 1989, this book is aimed at mathematicians, as well as mathematically literate scientists and engineers interested in harmonic analysis or wavelets. The authors provide not only a general understanding of the area of harmonic analysis relating to Littlewood-Paley theory and atomic and wavelet decompositions, but also some motivation and background helpful in understanding the recent theory of wavelets. The book begins with some simple examples which provide an overview of the classical Littlewood-Paley theory. The *q-transform, wavelet, and smooth atomic expansions are presented as natural extensions of the classical theory. Finally, applications to harmonic analysis (Calderon-Zygmund operators), signal processing (compression), and mathematical physics (potential theory) are discussed.


Topics in Harmonic Analysis Related to the Littlewood-Paley Theory

Topics in Harmonic Analysis Related to the Littlewood-Paley Theory

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 160

ISBN-13: 1400881870

DOWNLOAD EBOOK

This work deals with an extension of the classical Littlewood-Paley theory in the context of symmetric diffusion semigroups. In this general setting there are applications to a variety of problems, such as those arising in the study of the expansions coming from second order elliptic operators. A review of background material in Lie groups and martingale theory is included to make the monograph more accessible to the student.


Littlewood-Paley Theory on Spaces of Homogeneous Type and the Classical Function Spaces

Littlewood-Paley Theory on Spaces of Homogeneous Type and the Classical Function Spaces

Author: Yongsheng Han

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 138

ISBN-13: 0821825925

DOWNLOAD EBOOK

In this work, Han and Sawyer extend Littlewood-Paley theory, Besov spaces, and Triebel-Lizorkin spaces to the general setting of a space of homogeneous type. For this purpose, they establish a suitable analogue of the Calder 'on reproducing formula and use it to extend classical results on atomic decomposition, interpolation, and T1 and Tb theorems. Some new results in the classical setting are also obtained: atomic decompositions with vanishing b-moment, and Littlewood-Paley characterizations of Besov and Triebel-Lizorkin spaces with only half the usual smoothness and cancellation conditions on the approximate identity.


Theory of Function Spaces II

Theory of Function Spaces II

Author: Hans Triebel

Publisher: Springer Science & Business Media

Published: 1992-04-02

Total Pages: 388

ISBN-13: 9783764326395

DOWNLOAD EBOOK

Theory of Function Spaces II deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as Hölder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. Theory of Function Spaces II is self-contained, although it may be considered an update of the author’s earlier book of the same title. The book’s 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds. ------ Reviews The first chapter deserves special attention. This chapter is both an outstanding historical survey of function spaces treated in the book and a remarkable survey of rather different techniques developed in the last 50 years. It is shown that all these apparently different methods are only different ways of characterizing the same classes of functions. The book can be best recommended to researchers and advanced students working on functional analysis. - Zentralblatt MATH


Classical Fourier Analysis

Classical Fourier Analysis

Author: Loukas Grafakos

Publisher: Springer Science & Business Media

Published: 2008-09-18

Total Pages: 494

ISBN-13: 0387094326

DOWNLOAD EBOOK

The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online


Function Spaces and Potential Theory

Function Spaces and Potential Theory

Author: David R. Adams

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 372

ISBN-13: 3662032821

DOWNLOAD EBOOK

"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society


Function Classes on the Unit Disc

Function Classes on the Unit Disc

Author: Miroslav Pavlović

Publisher: Walter de Gruyter

Published: 2013-12-12

Total Pages: 463

ISBN-13: 3110281902

DOWNLOAD EBOOK

This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p > 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic.


Function Spaces and Partial Differential Equations

Function Spaces and Partial Differential Equations

Author: Ali Taheri

Publisher: Oxford Lecture Mathematics and

Published: 2015

Total Pages: 523

ISBN-13: 0198733135

DOWNLOAD EBOOK

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.


Analysis in Banach Spaces

Analysis in Banach Spaces

Author: Tuomas Hytönen

Publisher: Springer

Published: 2018-02-14

Total Pages: 630

ISBN-13: 3319698087

DOWNLOAD EBOOK

This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory. It presents a thorough study of the fundamental randomisation techniques and the operator-theoretic aspects of the theory. The first two chapters address the relevant classical background from the theory of Banach spaces, including notions like type, cotype, K-convexity and contraction principles. In turn, the next two chapters provide a detailed treatment of the theory of R-boundedness and Banach space valued square functions developed over the last 20 years. In the last chapter, this content is applied to develop the holomorphic functional calculus of sectorial and bi-sectorial operators in Banach spaces. Given its breadth of coverage, this book will be an invaluable reference to graduate students and researchers interested in functional analysis, harmonic analysis, spectral theory, stochastic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.


Fourier Analysis

Fourier Analysis

Author: William O. Bray

Publisher: CRC Press

Published: 2020-12-17

Total Pages: 465

ISBN-13: 1000117138

DOWNLOAD EBOOK

Providing complete expository and research papers on the geometric and analytic aspects of Fourier analysis, this work discusses new approaches to classical problems in the theory of trigonometric series, singular integrals/pseudo-differential operators, Fourier analysis on various groups, numerical aspects of Fourier analysis and their applications, wavelets and more.