Liquid crystals had a controversial discovery at the end of the 19th century but were later accepted as a 'fourth state' of matter, and finally used throughout the world in modern displays and new materials. This book explains the fascinating science in accessible terms, and puts it into social, political, and historical perspectives.
Life, Laptops and Liquid Crystals connects the science of one of the icons of the digital age, the laptop computer, with life itself via liquid crystals, the phase of matter essential to both. The book begins with a review of basic chemistry and physics, then goes on to discuss semiconductors, polymers, liquid crystals, and the molecules of life. Applications of these basic concepts to electronic devices, liquid crystal displays, art, and of course the laptop computer, complete the text. Physics, chemistry, materials science, electronics, and biology are all essential to understanding those topics. The necessary concepts in each field are developed with an eye to emphasizing molecules and molecular interactions. Each chapter concludes with review exercise, as well as references and research questions that encourage the reader to explore the topics in more depth.
The book begins with a description of the liquid crystal phase emphasizing its relationship to the other three well-known phases of matter. The types of molecules that form liquid crystal phases and the different liquid crystal phases are then discussed. Some of the general properties of liquid crystals are introduced and the book then addresses how we arrived at our current understanding of the liquid crystal phase.
Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature -- anisotropic physical properties of solids and rheological behavior of liquids -- and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scientific and industrial research. This book is an outgrowth of the enormous advances made during the last three decades in both our understanding of liquid crystals and our ability to use them in applications. It presents a systematic, self-contained and up-to-date overview of the structure and properties of liquid crystals. It will be of great value to graduates and research workers in condensed matter physics, chemical physics, biology, materials science, chemical and electrical engineering, and technology from a materials science and physics viewpoint of liquid crystals.
For much of the past 60 years, the U.S. research community dominated the discovery of new crystalline materials and the growth of large single crystals, placing the country at the forefront of fundamental advances in condensed-matter sciences and fueling the development of many of the new technologies at the core of U.S. economic growth. The opportunities offered by future developments in this field remain as promising as the achievements of the past. However, the past 20 years have seen a substantial deterioration in the United States' capability to pursue those opportunities at a time when several European and Asian countries have significantly increased investments in developing their own capacities in these areas. This book seeks both to set out the challenges and opportunities facing those who discover new crystalline materials and grow large crystals and to chart a way for the United States to reinvigorate its efforts and thereby return to a position of leadership in this field.
This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.
Liquid crystals have attracted scientific attention for potential applications in advanced devices. Display technology is continuously growing and expanding and, as such, this book provides an overview of the most recent advances in liquid crystals and displays. Chapters cover such topics as nematic liquid crystals, active matrix organic light-emitting diodes, and tetradentate platinum(II) emitters, among others.
Despite many of us staring at liquid crystals--in the form of liquid-crystal displays--for large portions of our waking life, for many their science and beauty is an untold story full of surprise and wonder. This book takes you on a photographic journey through the science of liquid crystals. By the end you'll be familiar with what they are, how they form and their role in producing the complexity of life on Earth. Presented in non-technical language, without any mathematics, this accessible text looks at spider webs, silk, display technology, lasers, dyes, detergents, DNA, cell membranes, drug delivery mechanisms, anaesthesia and optical computing. Presented in non-technical language and without any mathematics, this book is accessible to all, even if you have no prior knowledge of physics or chemistry.
The book intends to give a state-of-the-art overview of flexoelectricity, a linear physical coupling between mechanical (orientational) deformations and electric polarization, which is specific to systems with orientational order, such as liquid crystals. Chapters written by experts in the field shed light on theoretical as well as experimental aspects of research carried out since the discovery of flexoelectricity. Besides a common macroscopic (continuum) description the microscopic theory of flexoelectricity is also addressed. Electro-optic effects due to or modified by flexoelectricity as well as various (direct and indirect) measurement methods are discussed. Special emphasis is given to the role of flexoelectricity in pattern-forming instabilities. While the main focus of the book lies in flexoelectricity in nematic liquid crystals, peculiarities of other mesophases (bent-core systems, cholesterics, and smectics) are also reviewed. Flexoelectricity has relevance to biological (living) systems and can also offer possibilities for technical applications. The basics of these two interdisciplinary fields are also summarized.