Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities

Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities

Author: George Isac

Publisher: Springer Science & Business Media

Published: 2006-08-18

Total Pages: 346

ISBN-13: 0387329005

DOWNLOAD EBOOK

This book is the first to discuss complementarity theory and variational inequalities using Leray–Schauder type alternatives. Complementarity theory, a relatively new domain in applied mathematics, has deep connections with several aspects of fundamental mathematics. The ideas and method presented in this book may be considered as a starting point for new developments. The book presents a new kind of application for the Leray–Schauder principle.


Scalar and Asymptotic Scalar Derivatives

Scalar and Asymptotic Scalar Derivatives

Author: George Isac

Publisher: Springer Science & Business Media

Published: 2008-05-21

Total Pages: 253

ISBN-13: 0387739882

DOWNLOAD EBOOK

This extremely useful book is devoted to the study of scalar and asymptotic scalar derivatives and their applications to some problems in nonlinear analysis, Riemannian geometry and applied mathematics. The theoretical results are developed in particular with respect to the study of complementarity problems, monotonicity of nonlinear mappings and the non-gradient type monotonicity on Riemannian manifolds. The text is intended for researchers and graduate students working in the fields of nonlinear analysis, Riemannian geometry and applied mathematics.


Nonlinear Analysis and Variational Problems

Nonlinear Analysis and Variational Problems

Author: Panos M. Pardalos

Publisher: Springer Science & Business Media

Published: 2009-10-20

Total Pages: 502

ISBN-13: 1441901582

DOWNLOAD EBOOK

The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.


Mathematical Analysis, Approximation Theory and Their Applications

Mathematical Analysis, Approximation Theory and Their Applications

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2016-06-03

Total Pages: 745

ISBN-13: 3319312812

DOWNLOAD EBOOK

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.


Optimization and Optimal Control

Optimization and Optimal Control

Author: Altannar Chinchuluun

Publisher: Springer Science & Business Media

Published: 2010-07-07

Total Pages: 508

ISBN-13: 0387894950

DOWNLOAD EBOOK

Optimization and optimal control are the main tools in decision making. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. “Optimization and Optimal Control: Theory and Applications” brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization and optimal control can be applied.


Numerical Methods for Equations and its Applications

Numerical Methods for Equations and its Applications

Author: Ioannis K. Argyros

Publisher: CRC Press

Published: 2012-06-05

Total Pages: 474

ISBN-13: 1466517115

DOWNLOAD EBOOK

This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter co


Complementarity, Equilibrium, Efficiency and Economics

Complementarity, Equilibrium, Efficiency and Economics

Author: G. Isac

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 458

ISBN-13: 1475736231

DOWNLOAD EBOOK

In complementarity theory, which is a relatively new domain of applied mathematics, several kinds of mathematical models and problems related to the study of equilibrium are considered from the point of view of physics as well as economics. In this book the authors have combined complementarity theory, equilibrium of economical systems, and efficiency in Pareto's sense. The authors discuss the use of complementarity theory in the study of equilibrium of economic systems and present results they have obtained. In addition the authors present several new results in complementarity theory and several numerical methods for solving complementarity problems associated with the study of economic equilibrium. The most important notions of Pareto efficiency are also presented. Audience: Researchers and graduate students interested in complementarity theory, in economics, in optimization, and in applied mathematics.


Fixed Point Theory and Related Topics

Fixed Point Theory and Related Topics

Author: Hsien-ChungWu

Publisher: MDPI

Published: 2020-03-13

Total Pages: 236

ISBN-13: 3039284320

DOWNLOAD EBOOK

Fixed point theory arose from the Banach contraction principle and has been studied for a long time. Its application mostly relies on the existence of solutions to mathematical problems that are formulated from economics and engineering. After the existence of the solutions is guaranteed, the numerical methodology will be established to obtain the approximated solution. Fixed points of function depend heavily on the considered spaces that are defined using the intuitive axioms. In particular, variant metrics spaces are proposed, like a partial metric space, b-metric space, fuzzy metric space and probabilistic metric space, etc. Different spaces will result in different types of fixed point theorems. In other words, there are a lot of different types of fixed point theorems in the literature. Therefore, this Special Issue welcomes survey articles. Articles that unify the different types of fixed point theorems are also very welcome. The topics of this Special Issue include the following: Fixed point theorems in metric space Fixed point theorems in fuzzy metric space Fixed point theorems in probabilistic metric space Fixed point theorems of set-valued functions in various spaces The existence of solutions in game theory The existence of solutions for equilibrium problems The existence of solutions of differential equations The existence of solutions of integral equations Numerical methods for obtaining the approximated fixed points