Lectures on Stochastic Programming: Modeling and Theory, Third Edition

Lectures on Stochastic Programming: Modeling and Theory, Third Edition

Author: Alexander Shapiro

Publisher: SIAM

Published: 2021-08-19

Total Pages: 540

ISBN-13: 1611976596

DOWNLOAD EBOOK

An accessible and rigorous presentation of contemporary models and ideas of stochastic programming, this book focuses on optimization problems involving uncertain parameters for which stochastic models are available. Since these problems occur in vast, diverse areas of science and engineering, there is much interest in rigorous ways of formulating, analyzing, and solving them. This substantially revised edition presents a modern theory of stochastic programming, including expanded and detailed coverage of sample complexity, risk measures, and distributionally robust optimization. It adds two new chapters that provide readers with a solid understanding of emerging topics; updates Chapter 6 to now include a detailed discussion of the interchangeability principle for risk measures; and presents new material on formulation and numerical approaches to solving periodical multistage stochastic programs. Lectures on Stochastic Programming: Modeling and Theory, Third Edition is written for researchers and graduate students working on theory and applications of optimization, with the hope that it will encourage them to apply stochastic programming models and undertake further studies of this fascinating and rapidly developing area.


Lectures on Stochastic Programming

Lectures on Stochastic Programming

Author: Alexander Shapiro

Publisher: SIAM

Published: 2009-01-01

Total Pages: 447

ISBN-13: 0898718759

DOWNLOAD EBOOK

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.


Introduction to Stochastic Programming

Introduction to Stochastic Programming

Author: John R. Birge

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 427

ISBN-13: 0387226184

DOWNLOAD EBOOK

This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.


Lectures on Stochastic Programming

Lectures on Stochastic Programming

Author: Alexander Shapiro

Publisher: SIAM

Published: 2014-07-09

Total Pages: 512

ISBN-13: 1611973430

DOWNLOAD EBOOK

Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. In Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.


Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

Author: Rene Carmona

Publisher: SIAM

Published: 2016-02-18

Total Pages: 263

ISBN-13: 1611974240

DOWNLOAD EBOOK

The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.


Introduction to the Scenario Approach

Introduction to the Scenario Approach

Author: Marco C. Campi

Publisher: SIAM

Published: 2018-11-15

Total Pages: 121

ISBN-13: 1611975433

DOWNLOAD EBOOK

This book is about making decisions driven by experience. In this context, a scenario is an observation that comes from the environment, and scenario optimization refers to optimizing decisions over a set of available scenarios. Scenario optimization can be applied across a variety of fields, including machine learning, quantitative finance, control, and identification. This concise, practical book provides readers with an easy access point to make the scenario approach understandable to nonexperts, and offers an overview of various decision frameworks in which the method can be used. It contains numerous examples and diverse applications from a broad range of domains, including systems theory, control, biomedical engineering, economics, and finance. Practitioners can find "easy-to-use recipes," while theoreticians will benefit from a rigorous treatment of the theoretical foundations of the method, making it an excellent starting point for scientists interested in doing research in this field. Introduction to the Scenario Approach will appeal to scientists working in optimization, practitioners working in myriad fields involving decision-making, and anyone interested in data-driven decision-making.


Nonlinear Optimization

Nonlinear Optimization

Author: Andrzej Ruszczynski

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 463

ISBN-13: 1400841054

DOWNLOAD EBOOK

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.


An Introduction to Linear Programming and Game Theory

An Introduction to Linear Programming and Game Theory

Author: Paul R. Thie

Publisher: John Wiley & Sons

Published: 2011-09-15

Total Pages: 476

ISBN-13: 1118165454

DOWNLOAD EBOOK

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling

Author: Howard M. Taylor

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 410

ISBN-13: 1483269272

DOWNLOAD EBOOK

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.


Stochastic Calculus and Financial Applications

Stochastic Calculus and Financial Applications

Author: J. Michael Steele

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 303

ISBN-13: 1468493051

DOWNLOAD EBOOK

Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH