Learn Algorithmic Trading

Learn Algorithmic Trading

Author: Sourav Ghosh

Publisher:

Published: 2019-11-07

Total Pages: 394

ISBN-13: 9781789348347

DOWNLOAD EBOOK

Understand the fundamentals of algorithmic trading to apply algorithms to real market data and analyze the results of real-world trading strategies Key Features Understand the power of algorithmic trading in financial markets with real-world examples Get up and running with the algorithms used to carry out algorithmic trading Learn to build your own algorithmic trading robots which require no human intervention Book Description It's now harder than ever to get a significant edge over competitors in terms of speed and efficiency when it comes to algorithmic trading. Relying on sophisticated trading signals, predictive models and strategies can make all the difference. This book will guide you through these aspects, giving you insights into how modern electronic trading markets and participants operate. You'll start with an introduction to algorithmic trading, along with setting up the environment required to perform the tasks in the book. You'll explore the key components of an algorithmic trading business and aspects you'll need to take into account before starting an automated trading project. Next, you'll focus on designing, building and operating the components required for developing a practical and profitable algorithmic trading business. Later, you'll learn how quantitative trading signals and strategies are developed, and also implement and analyze sophisticated trading strategies such as volatility strategies, economic release strategies, and statistical arbitrage. Finally, you'll create a trading bot from scratch using the algorithms built in the previous sections. By the end of this book, you'll be well-versed with electronic trading markets and have learned to implement, evaluate and safely operate algorithmic trading strategies in live markets. What you will learn Understand the components of modern algorithmic trading systems and strategies Apply machine learning in algorithmic trading signals and strategies using Python Build, visualize and analyze trading strategies based on mean reversion, trend, economic releases and more Quantify and build a risk management system for Python trading strategies Build a backtester to run simulated trading strategies for improving the performance of your trading bot Deploy and incorporate trading strategies in the live market to maintain and improve profitability Who this book is for This book is for software engineers, financial traders, data analysts, and entrepreneurs. Anyone who wants to get started with algorithmic trading and understand how it works; and learn the components of a trading system, protocols and algorithms required for black box and gray box trading, and techniques for building a completely automated and profitable trading business will also find this book useful.


Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading

Author: Stefan Jansen

Publisher: Packt Publishing Ltd

Published: 2020-07-31

Total Pages: 822

ISBN-13: 1839216786

DOWNLOAD EBOOK

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.


Algorithmic Trading

Algorithmic Trading

Author: Ernie Chan

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 230

ISBN-13: 1118460146

DOWNLOAD EBOOK

Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader


Hands-On Machine Learning for Algorithmic Trading

Hands-On Machine Learning for Algorithmic Trading

Author: Stefan Jansen

Publisher: Packt Publishing Ltd

Published: 2018-12-31

Total Pages: 668

ISBN-13: 1789342716

DOWNLOAD EBOOK

Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.


Python for Algorithmic Trading

Python for Algorithmic Trading

Author: Yves Hilpisch

Publisher: O'Reilly Media

Published: 2020-11-12

Total Pages: 380

ISBN-13: 1492053325

DOWNLOAD EBOOK

Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms


MACHINE LEARNING FOR ALGORITHMIC TRADING

MACHINE LEARNING FOR ALGORITHMIC TRADING

Author: Jason Test

Publisher:

Published: 2020-11-20

Total Pages: 424

ISBN-13: 9789918608003

DOWNLOAD EBOOK

Master the best methods for PYTHON. Learn how to programming as a pro and get positive ROI in 7 days with data science and machine learning Are you looking for a super-fast computer programming course? Would you like to learn the Python Programming Language in 7 days? Do you want to increase your trading thanks to the artificial intelligence? If so, keep reading: this bundle book is for you! Today, thanks to computer programming and PYTHON we can work with sophisticated machines that can study human behavior and identify underlying human behavioral patterns. Scientists can predict effectively what products and services consumers are interested in. You can also create various quantitative and algorithmic trading strategies using Python. It is getting increasingly challenging for traditional businesses to retain their customers without adopting one or more of the cutting-edge technology explained in this book. MACHINE LEARNING FOR ALGORITHM TRADING will introduce you many selected tips and breaking down the basics of coding applied to finance. You will discover as a beginner the world of data science, machine learning and artificial intelligence with step-by-step guides that will guide you during the code-writing learning process. The following list is just a tiny fraction of what you will learn in this bundle PYTHON FOR BEGINNERS ✅ Differences among programming languages: Vba, SQL, R, Python ✅ 3 reasons why Python is fundamental for Data Science ✅ Introduction to some Python libraries like NumPy, Pandas, Matplotlib, ✅ 3 step system why Python is fundamental for Data Science ✅Describe the steps required to develop and test an ML-driven trading strategy. PYTHON DATA SCIENCE ✅ A Proven Method to Write your First Program in 7 Days ✅ 3 Common Mistakes to Avoid when You Start Coding ✅ Fit Python Data Analysis to your business ✅ 7 Most effective Machine Learning Algorithms ✅ Describe the methods used to optimize an ML-driven trading strategy. OPTIONS TRADING FOR BEGINNERS ✅ Options Trading Strategies that guarantee real results in all market conditions ✅ Top 7 endorsed indicators of a successful investment ✅ The Bull & Bear Game ✅ Learn about the 3 best charts patterns to fluctuations of stock prices DAY AND SWING TRADING ✅ How Swing trading differs from Day trading in terms of risk-aversion ✅ How your money should be invested and which trade is more profitable ✅ Swing and Day trading proven indicators to learn investment timing ✅ The secret DAY trading strategies leading to a gain of $ 9,000 per month and more than $100,000 per year. Even if you have never written a programming code before, you will quickly grasp the basics thanks to visual charts and guidelines for coding. Today is the best day to start programming like a pro. For those trading with leverage, looking for a way to take a controlled approach and manage risk, a properly designed trading system is the answer If you really wish to learn MACHINE LEARNING FOR ALGORITHMIC TRADING and master its language, please click the BUY NOW button.


The Science of Algorithmic Trading and Portfolio Management

The Science of Algorithmic Trading and Portfolio Management

Author: Robert Kissell

Publisher: Academic Press

Published: 2013-10-01

Total Pages: 492

ISBN-13: 0124016936

DOWNLOAD EBOOK

The Science of Algorithmic Trading and Portfolio Management, with its emphasis on algorithmic trading processes and current trading models, sits apart from others of its kind. Robert Kissell, the first author to discuss algorithmic trading across the various asset classes, provides key insights into ways to develop, test, and build trading algorithms. Readers learn how to evaluate market impact models and assess performance across algorithms, traders, and brokers, and acquire the knowledge to implement electronic trading systems. This valuable book summarizes market structure, the formation of prices, and how different participants interact with one another, including bluffing, speculating, and gambling. Readers learn the underlying details and mathematics of customized trading algorithms, as well as advanced modeling techniques to improve profitability through algorithmic trading and appropriate risk management techniques. Portfolio management topics, including quant factors and black box models, are discussed, and an accompanying website includes examples, data sets supplementing exercises in the book, and large projects. - Prepares readers to evaluate market impact models and assess performance across algorithms, traders, and brokers. - Helps readers design systems to manage algorithmic risk and dark pool uncertainty. - Summarizes an algorithmic decision making framework to ensure consistency between investment objectives and trading objectives.


An Introduction to Algorithmic Trading

An Introduction to Algorithmic Trading

Author: Edward Leshik

Publisher: John Wiley & Sons

Published: 2011-09-19

Total Pages: 273

ISBN-13: 1119975093

DOWNLOAD EBOOK

Interest in algorithmic trading is growing massively – it’s cheaper, faster and better to control than standard trading, it enables you to ‘pre-think’ the market, executing complex math in real time and take the required decisions based on the strategy defined. We are no longer limited by human ‘bandwidth’. The cost alone (estimated at 6 cents per share manual, 1 cent per share algorithmic) is a sufficient driver to power the growth of the industry. According to consultant firm, Aite Group LLC, high frequency trading firms alone account for 73% of all US equity trading volume, despite only representing approximately 2% of the total firms operating in the US markets. Algorithmic trading is becoming the industry lifeblood. But it is a secretive industry with few willing to share the secrets of their success. The book begins with a step-by-step guide to algorithmic trading, demystifying this complex subject and providing readers with a specific and usable algorithmic trading knowledge. It provides background information leading to more advanced work by outlining the current trading algorithms, the basics of their design, what they are, how they work, how they are used, their strengths, their weaknesses, where we are now and where we are going. The book then goes on to demonstrate a selection of detailed algorithms including their implementation in the markets. Using actual algorithms that have been used in live trading readers have access to real time trading functionality and can use the never before seen algorithms to trade their own accounts. The markets are complex adaptive systems exhibiting unpredictable behaviour. As the markets evolve algorithmic designers need to be constantly aware of any changes that may impact their work, so for the more adventurous reader there is also a section on how to design trading algorithms. All examples and algorithms are demonstrated in Excel on the accompanying CD ROM, including actual algorithmic examples which have been used in live trading.


Algorithmic Trading: A Comprehensive Beginner's Guide to Learn Algorithmic Training from A-Z

Algorithmic Trading: A Comprehensive Beginner's Guide to Learn Algorithmic Training from A-Z

Author: Stewart Gray

Publisher: Independently Published

Published: 2019-03-22

Total Pages: 152

ISBN-13: 9781091263970

DOWNLOAD EBOOK

Algorithmic Trading is a term known by many names - automated trading system, Black box trading, algo-trading, and quantitative trading . It is a system of trading that makes use of computers pre-programmed with specific trading instructions, also known as algorithm, for these computers to carry out in response to the stock market.Trade processes, such as buying and selling bonds, futures, and stocks, are therefore carried out by these computers, allowing the traders utilizing them to buy and sell shares in huge amounts and in speeds that is supposedly impossible for humans. The algorithms that these computers run on are based from historical output out of a encoded strategy once simulated on a set of historical data .A trader would normally call a broker or participate in the stock exchange pit in order buy and sell financial instruments - for example, Trader A follows a principle of buying 100 shares of a stock of certain companies whenever he notices that within 40-60 days such companies rose higher than their average past trends of let us say, 150 to 200 days.To engage in algorithmic trading, however, requires more than grabbing from an IT firm a software for one to engage in algorithmic trading - one cannot simply jump into a plane to Somewhere without even knowing where that Somewhere is.It is for this reason this book is written - to make sure that anybody who picks this book, including beginners in the field of algo-trading and those who know near to zero and are still grasping terminologies, fully understand what they are in for.This book, however, goes beyond this standard flow - each chapter ends with a summary, and at the same time readers will get to read snippets of fact and certain case studies. These glimpses to various aspects and practical applications of algorithmic trading will hopefully aid them to fully grasp the entirety of the phenomenon that is algorithmic trading.


Python Algorithmic Trading Cookbook

Python Algorithmic Trading Cookbook

Author: Pushpak Dagade

Publisher: Packt Publishing Ltd

Published: 2020-08-28

Total Pages: 528

ISBN-13: 1838982515

DOWNLOAD EBOOK

Build a solid foundation in algorithmic trading by developing, testing and executing powerful trading strategies with real market data using Python Key FeaturesBuild a strong foundation in algorithmic trading by becoming well-versed with the basics of financial marketsDemystify jargon related to understanding and placing multiple types of trading ordersDevise trading strategies and increase your odds of making a profit without human interventionBook Description If you want to find out how you can build a solid foundation in algorithmic trading using Python, this cookbook is here to help. Starting by setting up the Python environment for trading and connectivity with brokers, you’ll then learn the important aspects of financial markets. As you progress, you’ll learn to fetch financial instruments, query and calculate various types of candles and historical data, and finally, compute and plot technical indicators. Next, you’ll learn how to place various types of orders, such as regular, bracket, and cover orders, and understand their state transitions. Later chapters will cover backtesting, paper trading, and finally real trading for the algorithmic strategies that you've created. You’ll even understand how to automate trading and find the right strategy for making effective decisions that would otherwise be impossible for human traders. By the end of this book, you’ll be able to use Python libraries to conduct key tasks in the algorithmic trading ecosystem. Note: For demonstration, we're using Zerodha, an Indian Stock Market broker. If you're not an Indian resident, you won't be able to use Zerodha and therefore will not be able to test the examples directly. However, you can take inspiration from the book and apply the concepts across your preferred stock market broker of choice. What you will learnUse Python to set up connectivity with brokersHandle and manipulate time series data using PythonFetch a list of exchanges, segments, financial instruments, and historical data to interact with the real marketUnderstand, fetch, and calculate various types of candles and use them to compute and plot diverse types of technical indicatorsDevelop and improve the performance of algorithmic trading strategiesPerform backtesting and paper trading on algorithmic trading strategiesImplement real trading in the live hours of stock marketsWho this book is for If you are a financial analyst, financial trader, data analyst, algorithmic trader, trading enthusiast or anyone who wants to learn algorithmic trading with Python and important techniques to address challenges faced in the finance domain, this book is for you. Basic working knowledge of the Python programming language is expected. Although fundamental knowledge of trade-related terminologies will be helpful, it is not mandatory.