Space Physics and Aeronomy, Ionosphere Dynamics and Applications

Space Physics and Aeronomy, Ionosphere Dynamics and Applications

Author: Chao Huang

Publisher: John Wiley & Sons

Published: 2021-05-11

Total Pages: 47

ISBN-13: 1119507553

DOWNLOAD EBOOK

A comprehensive review of global ionospheric research from the polar caps to equatorial regions It's more than a century since scientists first identified the ionosphere, the layer of the Earth’s upper atmosphere that is ionized by solar and cosmic radiation. Our understanding of this dynamic part of the near-Earth space environment has greatly advanced in recent years thanks to new observational technologies, improved numerical models, and powerful computing capabilities. Ionosphere Dynamics and Applications provides a comprehensive overview of historic developments, recent advances, and future directions in ionospheric research. Volume highlights include: Behavior of the ionosphere in different regions from the poles to the equator Distinct characteristics of the high-, mid-, and low-latitude ionosphere Observational results from ground- and space-based instruments Ionospheric impacts on radio signals and satellite operations How earthquakes and tsunamis on Earth cause disturbances in the ionosphere The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief


Comparison of Ionospheric Scintillation Statistics from the North Atlantic and Alaskan Sectors of the Auroral Oval Using the Wideband Satellite

Comparison of Ionospheric Scintillation Statistics from the North Atlantic and Alaskan Sectors of the Auroral Oval Using the Wideband Satellite

Author: Sunanda Basu

Publisher:

Published: 1981

Total Pages: 136

ISBN-13:

DOWNLOAD EBOOK

Aerosol models have been developed for the lower atmosphere. These models are representative of conditions found in rural, urban, and maritime air masses. The changes in the aerosol properties with variations in the relative humidity are discussed. To describe the aerosol optical properties in the extreme of 100 percent relative humidity, several fog models are presented. For each model the coefficients for extinction, scattering, and absorption, the angular scattering distribution, and other optical parameters have been computed for wavelengths between 0.2 and 40 microns. These aerosol models are presented together with a review of their experimental basis. The optical properties of these models are discussed and some comparisons of the model with experimental measurements are presented.