The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech nologies. This book is written with the need for a "bridge" between different disciplines in mind. It is intended to present to engineers and scientists those parts of modem processing technologies that are of greatest importance to the design and manufacture of semi conductor circuits. The material is presented with sufficient detail to understand and analyze interactions between processing and other semiconductor disciplines, such as design of devices and cir cuits, their electrical parameters, reliability, and yield.
Ion Implantation and Beam Processing covers the scientific and technological advances in the fields of ion implantation and beam processing. The book discusses the amorphization and crystallization of semiconductors; the application of the Boltzmann transport equation to ion implantation in semiconductors and multilayer targets; and the high energy density collision cascades and spike effects. The text also describes the implantation of insulators (ices and lithographic materials); the ion-bombardment-induced compositions changes in alloys and compounds; and the fundamentals and applications of ion beam and laser mixing. The high-dose implantation and the trends of ion implantation in silicon technology are also considered. The book further tackles the implantation in gaAs technology and the contacts and interconnections on semiconductors. Engineers and people involved in microelectronics will find the book invaluable.
The latest developments in photochemistry on solid surfaces, i.e. photochemistry in heterogeneous systems, including liquid crystallines, are brought together for the first time in a single volume. Distinguished photochemists from various fields have contributed to the book which covers a number of important applications: molecular photo-devices for super-memory, photochemical vapor deposition to produce thin-layered electronic semiconducting materials, sensitive optical media, the control of photochemical reactions pathways, etc. Photochemistry on solid surfaces is now a major field and this book which provides an up-to-date and comprehensive overview of the subject will be of interest to a wide range of readers.
These volumes present the general parctitioners in engineering with a comprehensive discussion of technological surfaces, their interactions with environments, and the various modification techniques available to improve their performance. In each subject, applications to metals, ceramics, and polymers are emphasized. The interactions with the environment are described: corrosion (chemical), friction and waer (mechanical), and bioreactivity (physiological). Reviews of major modification schemes such as chemical vapor deposition, physical vapor deposition, laser beam interactions, chemical infusion, and ion implantation are presented. In summary, reviews of applications of the modification techniques to optimize the performances of structural components, tools, electronic devices, and implantable medical devices, manufactured out of metals, ceramic, and polymers, are described.
Containing the proceedings of three symposia in the E-MRS series this book is divided into two parts. Part one is concerned with ion beam processing, a particularly powerful and versatile technology which can be used both to synthesise and modify materials, including metals, semiconductors, ceramics and dielectrics, with great precision and excellent control. Furthermore it also deals with the correlated effects in atomic and cluster ion bombardment and implantation.Part two deals with the deposition techniques, characterization and applications of advanced ceramic, metallic and polymeric coatings or thin films for surface protection against corrosion, erosion, abrasion, diffusion and for lubrication of contracting surfaces in relative motion.