Flow Visualization Studies of a Fin Protuberance Partially Immersed in a Turbulent Boundary Layer at Mach 5

Flow Visualization Studies of a Fin Protuberance Partially Immersed in a Turbulent Boundary Layer at Mach 5

Author: Allen Edward Winkelmann

Publisher:

Published: 1970

Total Pages: 84

ISBN-13:

DOWNLOAD EBOOK

Various flow-visualization results are presented for a cylindrically blunted, unswept fin (yawed and unyawed) partially immersed in a turbulent boundary layer (delta approx. = 2.6 inches). The model, consisting of a fin-flat plate combination, was tested at a nominal Mach number of 5 and nominal free-stream Reynolds numbers per foot of 2800 000 and 7400 000. Azobenzene tests show regions of high heat transfer on the flat plate immediately upstream and downstream of the fin. Oil smear tests show in detail the surface shear directions and locations of separated flow which occur on the model. Schlieren and shadowgraph photographs indicate the complex shock wave structure which exists in front of the fin. A possible flow-field model is suggested to account for the observed flow patterns. (Author).


Characterization of the Flowfield Near a Wrap-Around Fin at Supersonic Speeds

Characterization of the Flowfield Near a Wrap-Around Fin at Supersonic Speeds

Author: Carl P. Tilmann

Publisher:

Published: 1998

Total Pages: 166

ISBN-13:

DOWNLOAD EBOOK

A wall-mounted semi-cylindrical model fitted with a single wrap- around in (WAF) has been investigated numerically and experimentally, with the objective of characterizing the mean and turbulent flowfield near a WAF in a supersonic flowfield. Numerical and experimental results are used to determine the nature of the flowfield and quantify the effects of fin curvature on the character of the flow near WAFs. This research has been motivated by the need to identify possible sources of a high-speed rolling moment reversal observed in sub-scale flight tests. Detailed mean flow and turbulence measurements were obtained in the AFIT Mach 3 wind tunnel using conventional probes and cross-wire hot-film anemometry at a series of stations upstream of and aft of the fin shock/boundary layer interaction. Hot-film anemometry results showed the turbulence intensity and Reynolds shear stress in the fuselage boundary layer to be far greater on the concave side of the fin than on the convex side. Mean flow was also obtained in the AFIT Mach 5 wind tunnel using conventional pressure probes. Numerical results were also obtained at the test conditions employing the algebraic eddy viscosity model of Baldwin and Lomax. Correlation with experimental data suggests that the calculations have captured the flow physics involved in this complicated flowfield. The calculations, corroborated by experimental results, indicate that a vortex exists in the fin/body juncture region on the convex side of the fin. This feature is not captured by the oft- used inviscid methods, and can greatly influence the pressure loading on the fin near the root.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1981

Total Pages: 1370

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Boundary Layer Effects

Boundary Layer Effects

Author: Anthony W. Fiore

Publisher:

Published: 1978

Total Pages: 962

ISBN-13:

DOWNLOAD EBOOK

In 1975 the U.S. Air Force and the Federal Republic of Germany signed a Data Exchange Agreement numbered AF-75-G-7440 entitled 'Viscous and Interacting Flow Fields.' The purpose was to exchange data in the area of boundary layer research. It includes both experimental and theoretical boundary layer research at speeds from subsonic to hypersonic Mach numbers in the presence of laminar, transitional, and turbulent boundary layers. The main effort in recent years has been on turbulent boundary layers, both attached and separated in the presence of such parameters as pressure gradients, wall temperature, surface roughness, etc. In the United States the research was conducted in various Department of Defense, NASA, aircraft corporations, and various university laboratories. In the Federal Republic of Germany it was carried out within the various DFVLR, industrial, and university research centers.