Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems

Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems

Author: Luis Rodrigues

Publisher: SIAM

Published: 2019-11-06

Total Pages: 243

ISBN-13: 1611975905

DOWNLOAD EBOOK

Engineering systems operate through actuators, most of which will exhibit phenomena such as saturation or zones of no operation, commonly known as dead zones. These are examples of piecewise-affine characteristics, and they can have a considerable impact on the stability and performance of engineering systems. This book targets controller design for piecewise affine systems, fulfilling both stability and performance requirements. The authors present a unified computational methodology for the analysis and synthesis of piecewise affine controllers, taking an approach that is capable of handling sliding modes, sampled-data, and networked systems. They introduce algorithms that will be applicable to nonlinear systems approximated by piecewise affine systems, and they feature several examples from areas such as switching electronic circuits, autonomous vehicles, neural networks, and aerospace applications. Piecewise Affine Control: Continuous-Time, Sampled-Data, and Networked Systems is intended for graduate students, advanced senior undergraduate students, and researchers in academia and industry. It is also appropriate for engineers working on applications where switched linear and affine models are important.


Linear Parameter-varying System Identification

Linear Parameter-varying System Identification

Author: Paulo Lopes dos Santos

Publisher: World Scientific

Published: 2012

Total Pages: 402

ISBN-13: 9814355445

DOWNLOAD EBOOK

This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--


Stability Theory of Switched Dynamical Systems

Stability Theory of Switched Dynamical Systems

Author: Zhendong Sun

Publisher: Springer Science & Business Media

Published: 2011-01-06

Total Pages: 266

ISBN-13: 0857292560

DOWNLOAD EBOOK

There are plenty of challenging and interesting problems open for investigation in the field of switched systems. Stability issues help to generate many complex nonlinear dynamic behaviors within switched systems. The authors present a thorough investigation of stability effects on three broad classes of switching mechanism: arbitrary switching where stability represents robustness to unpredictable and undesirable perturbation, constrained switching, including random (within a known stochastic distribution), dwell-time (with a known minimum duration for each subsystem) and autonomously-generated (with a pre-assigned mechanism) switching; and designed switching in which a measurable and freely-assigned switching mechanism contributes to stability by acting as a control input. For each of these classes this book propounds: detailed stability analysis and/or design, related robustness and performance issues, connections to other control problems and many motivating and illustrative examples.


Frequency-domain Methods For Nonlinear Analysis: Theory And Applications

Frequency-domain Methods For Nonlinear Analysis: Theory And Applications

Author: Gennady A Leonov

Publisher: World Scientific

Published: 1996-05-09

Total Pages: 512

ISBN-13: 9814500909

DOWNLOAD EBOOK

This book deals with the investigation of global attractors of nonlinear dynamical systems. The exposition proceeds from the simplest attractor of a single equilibrium to more complicated ones, i.e. to finite, denumerable and continuum equilibria sets; and further, to cycles, homoclinic and heteroclinic orbits; and finally, to strange attractors consisting of irregular unstable trajectories. On the complicated equilibria sets, the methods of Lyapunov stability theory are transferred. They are combined with stability techniques specially elaborated for such sets. The results are formulated as frequency-domain criteria. The methods connected with the theorems of existence of cycles and homoclinic orbits are developed. The estimates of Hausdorff dimensions of attractors are presented.


Piecewise Linear Control Systems

Piecewise Linear Control Systems

Author: Mikael K.-J. Johansson

Publisher: Springer

Published: 2003-07-01

Total Pages: 212

ISBN-13: 3540368019

DOWNLOAD EBOOK

2. Piecewise Linear Modeling . . . . . . . . . . . . . . . . . . . . . 9 2. 1 Model Representation . . . . . . . . . . . . . . . . . . . . . 9 2. 2 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . 2. 3 Uncertainty Models . . . . . . . . . . . . . . . . . . . . . . 2. 4 Modularity and Interconnections . . . . . . . . . . . . . . 26 2. 5 Piecewise Linear Function Representations . . . . . . . . . 28 2. 6 Comments and References . . . . . . . . . . . . . . . . . . 30 3. Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 1 Equilibrium Points and the Steady State Characteristic . . 32 3. 2 Constraint Verification and Invariance . . . . . . . . . . . 35 3. 3 Detecting Attractive Sliding Modes on Cell Boundaries 37 3. 4 Comments and References . . . . . . . . . . . . . . . . . . 39 4. Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. 1 Exponential Stability . . . . . . . . . . . . . . . . . . . . . . 41 4. 2 Quadratic Stability . . . . . . . . . . . . . . . . . . . . . . . 42 4. 3 Conservatism of Quadratic Stability . . . . . . . . . . . . . 46 4. 4 From Quadratic to Piecewise Quadratic . . . . . . . . . . . 48 4. 5 Interlude: Describing Partition Properties . . . . . . . . . 51 4. 6 Piecewise Quadratic Lyapunov Functions . . . . . . . . . 55 4. 7 Analysis of Piecewise Linear Differential Inclusions . . . . 61 4. 8 Analysis of Systems with Attractive Sliding Modes . . . . 63 4. 9 Improving Computational Efficiency . . . . . . . . . . . . 66 4. 10 Piecewise Linear Lyapunov Functions . . . . . . . . . . . 72 4. 11 A Unifying View . . . . . . . . . . . . . . . . . . . . . . . . 77 4. 12 Comments and References . . . . . . . . . . . . . . . . . . 82 5. Dissipativity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 85 5. 1 Dissipativity Analysis via Convex Optimization . . . . . . 86 21 14 Contents Contents 5. 2 Computation of £2 induced Gain . . . . . . . . . . . . . . 88 5. 3 Estimation of Transient Energy . . . . . . . . . . . . . . . . 89 5. 4 Dissipative Systems with Quadratic Supply Rates . . . . . 91 5. 5 Comments and References . . . . . . . . . . . . . . . . . . 95 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6. 1 Quadratic Stabilization of Piecewise Linear" Systems . . . 97 6. 2 Controller Synthesis based on Piecewise Quadratics . . . 98 6. 3 Comments and References . . . . . . . . . . . . . . . . . . 105 7. Selected Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7. 1 Estimation of Regions of Attraction . . . . . . . . . . . . .