Intuition in Mathematics and Physics

Intuition in Mathematics and Physics

Author: Ronny Desmet

Publisher:

Published: 2016-06-16

Total Pages: 246

ISBN-13: 9781940447131

DOWNLOAD EBOOK

Despite the many revolutions in science and philosophy since Newton and Hume, the outdated idea of an inevitable war between the abstractions of science and the deep intuitions of humankind is reconfirmed, again and again. The history of science is interpreted and presented as a succession of victories over the army of our misleading intuitions, and each success of science is marketed as a defeat of intuition. Instead of endorsing the modern dogma that a truth cannot be scientific unless it hurts the deep intuitions of mankind, and that we cannot be scientific unless we tame the authority of our intuition, the authors of this collection highlight developments in 20th and early 21st century science and philosophy that have the potential to support, or even further, Whitehead's philosophical integration of the abstractions of mathematics and physics with the deep intuitions of humankind. Instead of accepting the authority of science-inspired philosophers to reduce and disenchant nature and humankind in the name of our most successful scientific theories, the authors stress the contemporary relevance of Whitehead's philosophical research program of thinking things together - science and intuition; facts and values - to promote the fundamental coherence that is required to start building an ecological civilization.


Thinking About Equations

Thinking About Equations

Author: Matt A. Bernstein

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 189

ISBN-13: 1118210646

DOWNLOAD EBOOK

An accessible guide to developing intuition and skills for solving mathematical problems in the physical sciences and engineering Equations play a central role in problem solving across various fields of study. Understanding what an equation means is an essential step toward forming an effective strategy to solve it, and it also lays the foundation for a more successful and fulfilling work experience. Thinking About Equations provides an accessible guide to developing an intuitive understanding of mathematical methods and, at the same time, presents a number of practical mathematical tools for successfully solving problems that arise in engineering and the physical sciences. Equations form the basis for nearly all numerical solutions, and the authors illustrate how a firm understanding of problem solving can lead to improved strategies for computational approaches. Eight succinct chapters provide thorough topical coverage, including: Approximation and estimation Isolating important variables Generalization and special cases Dimensional analysis and scaling Pictorial methods and graphical solutions Symmetry to simplify equations Each chapter contains a general discussion that is integrated with worked-out problems from various fields of study, including physics, engineering, applied mathematics, and physical chemistry. These examples illustrate the mathematical concepts and techniques that are frequently encountered when solving problems. To accelerate learning, the worked example problems are grouped by the equation-related concepts that they illustrate as opposed to subfields within science and mathematics, as in conventional treatments. In addition, each problem is accompanied by a comprehensive solution, explanation, and commentary, and numerous exercises at the end of each chapter provide an opportunity to test comprehension. Requiring only a working knowledge of basic calculus and introductory physics, Thinking About Equations is an excellent supplement for courses in engineering and the physical sciences at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers, practitioners, and educators in all branches of engineering, physics, chemistry, biophysics, and other related fields who encounter mathematical problems in their day-to-day work.


Explorations in Mathematical Physics

Explorations in Mathematical Physics

Author: Don Koks

Publisher: Springer Science & Business Media

Published: 2006-09-15

Total Pages: 549

ISBN-13: 0387309438

DOWNLOAD EBOOK

Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.


Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics

Author: Frederick W. Byron

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 674

ISBN-13: 0486135063

DOWNLOAD EBOOK

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.


Intuition in Science and Mathematics

Intuition in Science and Mathematics

Author: Efraim Fischbein

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 234

ISBN-13: 0306472376

DOWNLOAD EBOOK

In writing the present book I have had in mind the following objectives: - To propose a theoretical, comprehensive view of the domain of intuition. - To identify and organize the experimental findings related to intuition scattered in a wide variety of research contexts. - To reveal the educational implications of the idea, developed for science and mathematics education. Most of the existing monographs in the field of intuition are mainly concerned with theoretical debates - definitions, philosophical attitudes, historical considerations. (See, especially the works of Wild (1938), of Bunge (1 962) and of Noddings and Shore (1 984).) A notable exception is the book by Westcott (1968), which combines theoretical analyses with the author’s own experimental studies. But, so far, no attempt has been made to identify systematically those findings, spread throughout the research literature, which could contribute to the deciphering of the mechanisms of intuition. Very often the relevant studies do not refer explicitly to intuition. Even when this term is used it occurs, usually, as a self-evident, common sense term.


Lectures On Computation

Lectures On Computation

Author: Richard P. Feynman

Publisher: Addison-Wesley Longman

Published: 1996-09-08

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b


Methods of Mathematical Physics

Methods of Mathematical Physics

Author: Richard Courant

Publisher: John Wiley & Sons

Published: 2008-09-26

Total Pages: 852

ISBN-13: 3527617248

DOWNLOAD EBOOK

Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.


Principles of Functional Analysis

Principles of Functional Analysis

Author: Martin Schechter

Publisher: American Mathematical Soc.

Published: 2001-11-13

Total Pages: 450

ISBN-13: 0821828959

DOWNLOAD EBOOK

This excellent book provides an elegant introduction to functional analysis ... carefully selected problems ... This is a nicely written book of great value for stimulating active work by students. It can be strongly recommended as an undergraduate or graduate text, or as a comprehensive book for self-study. --European Mathematical Society Newsletter Functional analysis plays a crucial role in the applied sciences as well as in mathematics. It is a beautiful subject that can be motivated and studied for its own sake. In keeping with this basic philosophy, the author has made this introductory text accessible to a wide spectrum of students, including beginning-level graduates and advanced undergraduates. The exposition is inviting, following threads of ideas, describing each as fully as possible, before moving on to a new topic. Supporting material is introduced as appropriate, and only to the degree needed. Some topics are treated more than once, according to the different contexts in which they arise. The prerequisites are minimal, requiring little more than advanced calculus and no measure theory. The text focuses on normed vector spaces and their important examples, Banach spaces and Hilbert spaces. The author also includes topics not usually found in texts on the subject. This Second Edition incorporates many new developments while not overshadowing the book's original flavor. Areas in the book that demonstrate its unique character have been strengthened. In particular, new material concerning Fredholm and semi-Fredholm operators is introduced, requiring minimal effort as the necessary machinery was already in place. Several new topics are presented, but relate to only those concepts and methods emanating from other parts of the book. These topics include perturbation classes, measures of noncompactness, strictly singular operators, and operator constants. Overall, the presentation has been refined, clarified, and simplified, and many new problems have been added. The book is recommended to advanced undergraduates, graduate students, and pure and applied research mathematicians interested in functional analysis and operator theory.