Introduction to Graph Theory

Introduction to Graph Theory

Author: Richard J. Trudeau

Publisher: Courier Corporation

Published: 2013-04-15

Total Pages: 242

ISBN-13: 0486318664

DOWNLOAD EBOOK

Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.


Graph Theory

Graph Theory

Author: Bela Bollobas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 191

ISBN-13: 1461299675

DOWNLOAD EBOOK

From the reviews: "Béla Bollobás introductory course on graph theory deserves to be considered as a watershed in the development of this theory as a serious academic subject. ... The book has chapters on electrical networks, flows, connectivity and matchings, extremal problems, colouring, Ramsey theory, random graphs, and graphs and groups. Each chapter starts at a measured and gentle pace. Classical results are proved and new insight is provided, with the examples at the end of each chapter fully supplementing the text... Even so this allows an introduction not only to some of the deeper results but, more vitally, provides outlines of, and firm insights into, their proofs. Thus in an elementary text book, we gain an overall understanding of well-known standard results, and yet at the same time constant hints of, and guidelines into, the higher levels of the subject. It is this aspect of the book which should guarantee it a permanent place in the literature." #Bulletin of the London Mathematical Society#1


Graph Theory

Graph Theory

Author: Karin R Saoub

Publisher: CRC Press

Published: 2021-03-17

Total Pages: 421

ISBN-13: 0429779887

DOWNLOAD EBOOK

Graph Theory: An Introduction to Proofs, Algorithms, and Applications Graph theory is the study of interactions, conflicts, and connections. The relationship between collections of discrete objects can inform us about the overall network in which they reside, and graph theory can provide an avenue for analysis. This text, for the first undergraduate course, will explore major topics in graph theory from both a theoretical and applied viewpoint. Topics will progress from understanding basic terminology, to addressing computational questions, and finally ending with broad theoretical results. Examples and exercises will guide the reader through this progression, with particular care in strengthening proof techniques and written mathematical explanations. Current applications and exploratory exercises are provided to further the reader’s mathematical reasoning and understanding of the relevance of graph theory to the modern world. Features The first chapter introduces graph terminology, mathematical modeling using graphs, and a review of proof techniques featured throughout the book The second chapter investigates three major route problems: eulerian circuits, hamiltonian cycles, and shortest paths. The third chapter focuses entirely on trees – terminology, applications, and theory. Four additional chapters focus around a major graph concept: connectivity, matching, coloring, and planarity. Each chapter brings in a modern application or approach. Hints and Solutions to selected exercises provided at the back of the book. Author Karin R. Saoub is an Associate Professor of Mathematics at Roanoke College in Salem, Virginia. She earned her PhD in mathematics from Arizona State University and BA from Wellesley College. Her research focuses on graph coloring and on-line algorithms applied to tolerance graphs. She is also the author of A Tour Through Graph Theory, published by CRC Press.


Pearls in Graph Theory

Pearls in Graph Theory

Author: Nora Hartsfield

Publisher: Courier Corporation

Published: 2013-04-15

Total Pages: 276

ISBN-13: 0486315525

DOWNLOAD EBOOK

Stimulating and accessible, this undergraduate-level text covers basic graph theory, colorings of graphs, circuits and cycles, labeling graphs, drawings of graphs, measurements of closeness to planarity, graphs on surfaces, and applications and algorithms. 1994 edition.


Basic Graph Theory

Basic Graph Theory

Author: Md. Saidur Rahman

Publisher: Springer

Published: 2017-05-02

Total Pages: 173

ISBN-13: 3319494759

DOWNLOAD EBOOK

This undergraduate textbook provides an introduction to graph theory, which has numerous applications in modeling problems in science and technology, and has become a vital component to computer science, computer science and engineering, and mathematics curricula of universities all over the world. The author follows a methodical and easy to understand approach. Beginning with the historical background, motivation and applications of graph theory, the author first explains basic graph theoretic terminologies. From this firm foundation, the author goes on to present paths, cycles, connectivity, trees, matchings, coverings, planar graphs, graph coloring and digraphs as well as some special classes of graphs together with some research topics for advanced study. Filled with exercises and illustrations, Basic Graph Theory is a valuable resource for any undergraduate student to understand and gain confidence in graph theory and its applications to scientific research, algorithms and problem solving.


Graph Theory and Complex Networks

Graph Theory and Complex Networks

Author: Maarten van Steen

Publisher: Maarten Van Steen

Published: 2010

Total Pages: 285

ISBN-13: 9789081540612

DOWNLOAD EBOOK

This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory. 2.Understand how basic graph theory can be applied to optimization problems such as routing in communication networks. 3.Know a bit more about this sometimes mystical field of small worlds and random networks. There is an accompanying web site www.distributed-systems.net/gtcn from where supplementary material can be obtained, including exercises, Mathematica notebooks, data for analyzing graphs, and generators for various complex networks.


Modern Graph Theory

Modern Graph Theory

Author: Bela Bollobas

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 408

ISBN-13: 1461206197

DOWNLOAD EBOOK

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.


Graphs and Matrices

Graphs and Matrices

Author: Ravindra B. Bapat

Publisher: Springer

Published: 2014-09-19

Total Pages: 197

ISBN-13: 1447165691

DOWNLOAD EBOOK

This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.