Graduate-level monograph develops background and fundamental theory of inversion processes used in remote sensing (e.g. atmospheric temperature structure measurements from satellites), starting at elementary level. Largely self-contained; each chapter begins with elementary discussion outlining problems and questions to be covered. Suggestions for further reading.
This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.
This book is an informative reference, or working textbook, on the mathematics, and general physical and chemical processes behind remote sensor measurements.
Ulam, famous for his solution to the difficulties of initiating fusion in the hydrogen bomb, devised the well-known Monte-Carlo method. Here he presents challenges in the areas of set theory, algebra, metric and topological spaces, and topological groups. Issues in analysis, physical systems, and the use of computers as a heuristic aid are also addressed.
INTRODUCTION TO THE PHYSICS AND TECHNIQUES OF REMOTE SENSING DISCOVER CUTTING EDGE THEORY AND APPLICATIONS OF MODERN REMOTE SENSING IN GEOLOGY, OCEANOGRAPHY, ATMOSPHERIC SCIENCE, IONOSPHERIC STUDIES, AND MORE The thoroughly revised third edition of the Introduction to the Physics and Techniques of Remote Sensing delivers a comprehensive update to the authoritative textbook, offering readers new sections on radar interferometry, radar stereo, and planetary radar. It explores new techniques in imaging spectroscopy and large optics used in Earth orbiting, planetary, and astrophysics missions. It also describes remote sensing instruments on, as well as data acquired with, the most recent Earth and space missions. Readers will benefit from the brand new and up-to-date concept examples and full-color photography, 50% of which is new to the series. You’ll learn about the basic physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum (from ultraviolet to microwave), and the concepts behind the remote sensing techniques used today and those planned for the future. The book also discusses the applications of remote sensing for a wide variety of earth and planetary atmosphere and surface sciences, like geology, oceanography, resource observation, atmospheric sciences, and ionospheric studies. This new edition also incorporates: A fulsome introduction to the nature and properties of electromagnetic waves An exploration of sensing solid surfaces in the visible and near infrared spectrums, as well as thermal infrared, microwave, and radio frequencies A treatment of ocean surface sensing, including ocean surface imaging and the mapping of ocean topography A discussion of the basic principles of atmospheric sensing and radiative transfer, including the radiative transfer equation Perfect for senior undergraduate and graduate students in the field of remote sensing instrument development, data analysis, and data utilization, Introduction to the Physics and Techniques of Remote Sensing will also earn a place in the libraries of students, faculty, researchers, engineers, and practitioners in fields like aerospace, electrical engineering, and astronomy.
One of the twentieth century's most eminent mathematical writers, Augustus De Morgan enriched his expositions with insights from history and psychology. On the Study and Difficulties of Mathematics represents some of his best work, containing points usually overlooked by elementary treatises, and written in a fresh and natural tone that provides a refreshing contrast to the mechanical character of common textbooks. Presuming only a knowledge of the rules of algebra and Euclidean theorems, De Morgan begins with some introductory remarks on the nature and objects of mathematics. He discusses the concept of arithmetical notion and its elementary rules, including arithmetical reactions and decimal fractions. Moving on to algebra, he reviews the elementary principles, examines equations of the first and second degree, and surveys roots and logarithms. De Morgan's book concludes with an exploration of geometrical reasoning that encompasses the formulation and use of axioms, the role of proportion, and the application of algebra to the measurement of lines, angles, the proportion of figures, and surfaces.
50 essays by eminent scholars include meditations on "Structures," Disciplines," "Space," "Function," "Group," "Probability," and "The Mathematical Epic" (Volume I) and on "Mathematics and the Human Intellect," "Mathematics and Technology," and "Mathematics and Civilization" (Volume II). 1962 edition.
The first graduate-level text devoted to the subject, this classic offers a concise history and overview of methods as well as an excellent exposition of the mathematical foundations underlying classical operations research procedures. It begins with a review of historical, scientific, and mathematical aspects; examples and ideas related to classical methods of forming models introduce discussions of optimization, game theory, applications of probability, and queuing theory. Carefully selected exercises illustrate important and useful ideas. This text is an ideal introduction for students to the basic mathematics of operations research as well as a valuable source of references to early literature on operations research. 1959 edition.