Introduction to Geometry
Author: Richard Rusczyk
Publisher: Aops Incorporated
Published: 2007-07-01
Total Pages: 557
ISBN-13: 9781934124086
DOWNLOAD EBOOKRead and Download eBook Full
Author: Richard Rusczyk
Publisher: Aops Incorporated
Published: 2007-07-01
Total Pages: 557
ISBN-13: 9781934124086
DOWNLOAD EBOOKAuthor: C. R. Wylie
Publisher: Courier Corporation
Published: 2011-09-12
Total Pages: 578
ISBN-13: 0486141705
DOWNLOAD EBOOKThis lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
Published: 2018-06-01
Total Pages: 498
ISBN-13: 1470435187
DOWNLOAD EBOOKThis book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Author: Harold Scott Macdonald Coxeter
Publisher:
Published: 1989
Total Pages: 469
ISBN-13:
DOWNLOAD EBOOKAuthor: Michael P. Hitchman
Publisher: Jones & Bartlett Learning
Published: 2009
Total Pages: 255
ISBN-13: 0763754579
DOWNLOAD EBOOKThe content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.
Author: Nathan Altshiller-Court
Publisher: Dover Publications
Published: 2013-12-30
Total Pages: 336
ISBN-13: 9780486788470
DOWNLOAD EBOOKThe standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.
Author: Israel M. Gelfand
Publisher: Springer Nature
Published: 2020-02-22
Total Pages: 438
ISBN-13: 1071602993
DOWNLOAD EBOOKThis text is the fifth and final in the series of educational books written by Israel Gelfand with his colleagues for high school students. These books cover the basics of mathematics in a clear and simple format – the style Gelfand was known for internationally. Gelfand prepared these materials so as to be suitable for independent studies, thus allowing students to learn and practice the material at their own pace without a class. Geometry takes a different approach to presenting basic geometry for high-school students and others new to the subject. Rather than following the traditional axiomatic method that emphasizes formulae and logical deduction, it focuses on geometric constructions. Illustrations and problems are abundant throughout, and readers are encouraged to draw figures and “move” them in the plane, allowing them to develop and enhance their geometrical vision, imagination, and creativity. Chapters are structured so that only certain operations and the instruments to perform these operations are available for drawing objects and figures on the plane. This structure corresponds to presenting, sequentially, projective, affine, symplectic, and Euclidean geometries, all the while ensuring students have the necessary tools to follow along. Geometry is suitable for a large audience, which includes not only high school geometry students, but also teachers and anyone else interested in improving their geometrical vision and intuition, skills useful in many professions. Similarly, experienced mathematicians can appreciate the book’s unique way of presenting plane geometry in a simple form while adhering to its depth and rigor. “Gelfand was a great mathematician and also a great teacher. The book provides an atypical view of geometry. Gelfand gets to the intuitive core of geometry, to the phenomena of shapes and how they move in the plane, leading us to a better understanding of what coordinate geometry and axiomatic geometry seek to describe.” - Mark Saul, PhD, Executive Director, Julia Robinson Mathematics Festival “The subject matter is presented as intuitive, interesting and fun. No previous knowledge of the subject is required. Starting from the simplest concepts and by inculcating in the reader the use of visualization skills, [and] after reading the explanations and working through the examples, you will be able to confidently tackle the interesting problems posed. I highly recommend the book to any person interested in this fascinating branch of mathematics.” - Ricardo Gorrin, a student of the Extended Gelfand Correspondence Program in Mathematics (EGCPM)
Author: Melvin Hausner
Publisher: Courier Dover Publications
Published: 2018-10-17
Total Pages: 417
ISBN-13: 0486835391
DOWNLOAD EBOOKA fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.
Author: George E. Martin
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 251
ISBN-13: 1461256801
DOWNLOAD EBOOKTransformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
Author: John M. Lee
Publisher: American Mathematical Soc.
Published: 2013-04-10
Total Pages: 490
ISBN-13: 0821884786
DOWNLOAD EBOOKThe story of geometry is the story of mathematics itself: Euclidean geometry was the first branch of mathematics to be systematically studied and placed on a firm logical foundation, and it is the prototype for the axiomatic method that lies at the foundation of modern mathematics. It has been taught to students for more than two millennia as a mode of logical thought. This book tells the story of how the axiomatic method has progressed from Euclid's time to ours, as a way of understanding what mathematics is, how we read and evaluate mathematical arguments, and why mathematics has achieved the level of certainty it has. It is designed primarily for advanced undergraduates who plan to teach secondary school geometry, but it should also provide something of interest to anyone who wishes to understand geometry and the axiomatic method better. It introduces a modern, rigorous, axiomatic treatment of Euclidean and (to a lesser extent) non-Euclidean geometries, offering students ample opportunities to practice reading and writing proofs while at the same time developing most of the concrete geometric relationships that secondary teachers will need to know in the classroom. -- P. [4] of cover.