Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections.
Introduction to Fiber Optics is well established as an introductory text for engineers, managers and students. It meets the needs of systems designers, installation engineers, electronic engineers and anyone else looking to gain a working knowledge of fiber optics with a minimum of maths. Review questions are included in the text to enable the reader to check their understanding as they work through the book.The new edition of this successful book is now fully up to date with the new standards, latest technological developments and includes a new chapter on specifying optical components.Whether you are looking for a complete self-study course in fiber optics, a concise reference text to dip into, or a readable introduction to this fast moving technology, this book has the solution. - A practical, no-nonsense guide to fiber optics - Up-to-date coverage that minimises mathematics - New material on specifying optical components
For courses in Introduction to Fiber Optics and Introduction to Optical Networking in departments of Electronics Technology and Electronics Engineering Technology. Also suitable for corporate training programs. Ideal for technicians, entry-level engineers, and other nonspecialists, this best-selling practical, thorough, and accessible introduction to fiber optics reflects the expertise of an author who has followed the field for over 25 years. Using a non-theoretical/non-mathematical approach, it explains the principles of optical fibers, describes components and how they work, explores the tools and techniques used to work with them and the devices used to connect fiber network, and concludes with applications showing how fibers are used in modern communication systems. It covers both existing systems and developing technology, so students can understand present systems and new developments.
* Ideal for those with some background in communications but without previous knowledge of fiber optics * Provides a comprehensive treatment of the fundamentals of fiber optic systems and their individual components * Places emphasis on practical techniques of component installation and system design Fiber Optics is a technology that uses glass (or plastic) threads (fibers) to transmit data. A fiber optic cable consists of a bundle of glass threads, each of which is capable of transmitting messages modulated onto light waves. Fiber optics have several advantages over traditional metal communications lines. While there are plenty of theoretical texts on fiber optics, high-level engineering texts and installation guides, there are few comprehensive applied texts for practicing engineers. This book covers design issues, installation and troubleshooting in the right depth for engineers working in industry. Readers will use this knowledge to develop the required techniques for design, installation and maintenance of their own fiber optic systems.
A thorough account on the basics of fiber optics system design is contained in this volume. Introducing the topics from the vantage point of the student and professional electrical engineer, the aim of the text is to teach rather than merely present facts. The overall view of the text is toward practical engineering considerations including costs, and a discussion of radiation effects is associated with each appropriate chapter.The volume begins with a history of optical communications, leading to the now widely practiced field of fiber optics. Comparisons are made to conventional media and techniques: wire-line, coaxial cable, and radio. The nature and properties of optical fiber are examined, including manufacturing techniques, and fiber types and capabilities. The theory of light guidance is introduced in steps, beginning with a slab waveguide. Solutions of Maxwell's equations are derived and explained in view of the peculiar nature of the medium. Electro-optic devices are examined, including launching and detecting devices. The properties and varieties of these devices are explored. In particular, light-emitting diodes, injection laser diodes, p-i-n diodes, and avalanche photo diodes are covered. The electronic circuits necessary to adequately serve the electro-optic devices are examined and contrasted with more conventional types.Modulation techniques appropriate to optical fiber transmission systems are enumerated and compared. Overall system considerations are addressed, and examples are given of various systems that have been deployed, or are planned for deployment. Expectations for future developments and trends in the field are enumerated, with indications of their significance. Topics such as ultra-low-loss fiber and coherent detections techniques are discussed.Appendices comprising an accounting of useful laboratory equipment, mathematical relations employed in the body of the text, and complete exercise solutions are included.
Within the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and our ways of life. In particular, fiber optics has been playing an increasingly crucial role within the telecommunication revolution. Not only most long-distance links are fiber based, but optical fibers are increasingly approaching the individual end users, providing wide bandwidth links to support all kinds of data-intensive applications such as video, voice, and data services. As an engineering discipline, fiber optics is both fascinating and challenging. Fiber optics is an area that incorporates elements from a wide range of techno- gies including optics, microelectronics, quantum electronics, semiconductors, and networking. As a result of rapid changes in almost all of these areas, fiber optics is a fast evolving field. Therefore, the need for up-to-date texts that address this growing field from an interdisciplinary perspective persists. This book presents an overview of fiber optics from a practical, engineering perspective. Therefore, in addition to topics such as lasers, detectors, and optical fibers, several topics related to electronic circuits that generate, detect, and process the optical signals are covered. In other words, this book attempts to present fiber optics not so much in terms of a field of “optics” but more from the perspective of an engineering field within “optoelectronics.
This book is a MUST for everyone in and around the optics community! Fiber Optic Essentials provides professionals and students new to the field of fiber optics with a high-level knowledge of principles, theories and applications. This primer can also be used as a succinct overview of optics for those with some engineering and physics background. Individuals involved with optics in non-traditional capacities such as in marketing and legal departments will find this volume introduces basic concepts completely in an easy to read format. Casimer and Carolyn DeCusatis have provided a concise resource with compact chapters and minimal equations conveying this complex topic in a straightforward and clear-cut style. Included in this book are chapters on fibers, cables, connectors, transmitters, modulators, noise, and optical link design. Concluding this reference are three indispensable appendices covering extensive definitions, acronyms (including initials and commonly used slang), measurement conversions and physical constants. This author team has produced a book that has truly shed light on this difficult subject. - Comprehensively covers basic fiber optic 'facts' - Explains how optics relate to everyday life - Details fiber optic communication standards - Chapter included on medical applications - Timeline traces the history of optics with major milestones
This book explains physical principles, unique benefits, broad categories, implementation aspects, and performance criteria of distributed optical fiber sensors (DOFS). For each kind of sensor, the book highlights industrial applications, which range from oil and gas production to power line monitoring, plant and process engineering, environmental monitoring, industrial fire and leakage detection, and so on. The text also includes a discussion of such key areas as backscattering, launched power limitations, and receiver sensitivity, as well as a concise historical account of the field’s development.