Introduction to Complex Hyperbolic Spaces

Introduction to Complex Hyperbolic Spaces

Author: Serge Lang

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 278

ISBN-13: 1475719450

DOWNLOAD EBOOK

Since the appearance of Kobayashi's book, there have been several re sults at the basic level of hyperbolic spaces, for instance Brody's theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I re produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not super sede Kobayashi's. My interest in these matters stems from their relations with diophan tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevan linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case and made substantial progress, after the line started by Grauert and Grauert-Reckziegel and continued by a recent paper of Riebesehl. The book is divided into three main parts: the basic complex analytic theory, differential geometric aspects, and Nevanlinna theory. Several chapters of this book are logically independent of each other.


Hyperbolic Complex Spaces

Hyperbolic Complex Spaces

Author: Shoshichi Kobayashi

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 480

ISBN-13: 3662035820

DOWNLOAD EBOOK

In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.


Complex Hyperbolic Geometry

Complex Hyperbolic Geometry

Author: William Mark Goldman

Publisher: Oxford University Press

Published: 1999

Total Pages: 342

ISBN-13: 9780198537939

DOWNLOAD EBOOK

This is the first comprehensive treatment of the geometry of complex hyperbolic space, a rich area of research with numerous connections to other branches of mathematics, including Riemannian geometry, complex analysis, symplectic and contact geometry, Lie groups, and harmonic analysis.


Outer Circles

Outer Circles

Author: A. Marden

Publisher: Cambridge University Press

Published: 2007-05-31

Total Pages: 393

ISBN-13: 1139463764

DOWNLOAD EBOOK

We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.


Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds

Author: John Ratcliffe

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 761

ISBN-13: 1475740131

DOWNLOAD EBOOK

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.


Hyperbolic Geometry

Hyperbolic Geometry

Author: James W. Anderson

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 239

ISBN-13: 1447139879

DOWNLOAD EBOOK

Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America


Complex Kleinian Groups

Complex Kleinian Groups

Author: Angel Cano

Publisher: Springer Science & Business Media

Published: 2012-11-05

Total Pages: 288

ISBN-13: 3034804814

DOWNLOAD EBOOK

This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.​


Lectures on Hyperbolic Geometry

Lectures on Hyperbolic Geometry

Author: Riccardo Benedetti

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 343

ISBN-13: 3642581587

DOWNLOAD EBOOK

Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.


An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem

An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem

Author: Luca Capogna

Publisher: Springer Science & Business Media

Published: 2007-08-08

Total Pages: 235

ISBN-13: 3764381337

DOWNLOAD EBOOK

This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.