Agricultural Biochemistry will provide an introduction to the subject of biochemistry from a perspective that will be particularly applicable to agricultural scientists. It will focus on the chemistry of plant and animal metabolism and the biomolecules that are involved in these pathways and then go on to discuss strategies plants and animals adopt for processing of nutrients, the adaptation of these organisms to environmental conditions and the ways in which new genetic engineering techniques can be used to manipulate growth.
An Introduction to Agricultural Biochemistry focuses on the chemistry of plant and animal metabolism and the biomolecules that are involved in these pathways, and then goes on to discuss strategies adopted for processing nutrients.
Plant Biochemistry presents each topic from the cellular level to the ecological and environmental levels, placing it in the context of the whole plant. Biochemical pathways are represented as route maps, showing how one reaction follows another. These maps emphasize the dynamism and fl exibility of the plant in the face of environmental challenges. The unique and wide-ranging approach of this book emphasizes the importance of teaching and learning pathways within the framework of what the pathway does and why it is needed. Plant Biochemistry is invaluable to undergraduate students who wish to gain insight into the relevance of plant biochemistry to humans and animals. It is an ideal reference text for graduates and researchers.
The development of agricultura chemistry. Chemistry of living matter. Physical state of matter. Carbohydrates. The lipids. Proteins. Enzymes. Biological oxidation. Seed germination. The soil and it relation to plant growt. Fertilizers. Plant metabolism. Farm chemurgy. Foods and feeding stuffs. Digestion of foods. The chemistry of blood, lymph, and body tissues. The vitamins. Energy metabolism. Carbohydrate metabolism. Lipid metabolism. Protein metabolism. Protein nutrition. Mineral metabolism. Mineral nutrition.
Authored by an integrated committee of plant and animal scientists, this review of newer molecular genetic techniques and traditional research methods is presented as a compilation of high-reward opportunities for agricultural research. Directed to the Agricultural Research Service and the agricultural research community at large, the volume discusses biosciences research in genetic engineering, animal science, plant science, and plant diseases and insect pests. An optimal climate for productive research is discussed.
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.
The biochemistry of food is the foundation on which the research and development advances in food biotechnology are built. In Food Biochemistry and Food Processing, lead editor Y.H. Hui has assembled over fifty acclaimed academicians and industry professionals to create this indispensable reference and text on food biochemistry and the ever-increasing development in the biotechnology of food processing. While biochemistry may be covered in a chapter or two in standard reference books on the chemistry, enzymes, or fermentation of food, and may be addressed in greater depth by commodity-specific texts (e.g., the biotechnology of meat, seafood, or cereal), books on the general coverage of food biochemistry are not so common. Food Biochemistry and Food Processing effectively fills this void. Beginning with sections on the essential principles of food biochemistry, enzymology and food processing, the book then takes the reader on commodity-by-commodity discussions of biochemistry of raw materials and product processing. Later sections address the biochemistry and processing aspects of food fermentation, microbiology, and food safety. As an invaluable reference tool or as a state-of-the-industry text, Food Biochemistry and Food Processing fully develops and explains the biochemical aspects of food processing for scientist and student alike.
Very Short Introductions: Brilliant, Sharp, Inspiring From the simplest bacteria to humans, all living things are composed of cells of one type or another, all of which have fundamentally the same chemistry. This chemistry must provide mechanisms that allow cells to interact with the external world, a means to power the cell, machinery to carry out varied processes within the cell, a structure within which everything runs, and also governance through a web of interlocking chemical reactions. Biochemistry is the study of those reactions, the molecules that are created, manipulated, and destroyed as a result of them, and the massive macromolecules (such as DNA, cytoskeletons, proteins and carbohydrates) that form the chemical machinery and structures on which these biochemical reactions take place. It didn't take long for an understanding of the chemistry of life to turn into a desire to manipulate it. Drugs and therapies all aim to modify biochemical processes for good or ill: Penicillin, derived from mould, stops bacteria making their cell walls. Aspirin, with its origins in willow bark, inhibits enzymes involved in inflammatory responses. A few nanograms of botulinum toxin (botox), can kill by preventing the release of neurotransmitters from the ends of nerves and so leads to paralysis and death, or give a wrinkle free forehead (if administered in very tiny quantities).This Very Short Introduction discusses the key concepts of biochemistry, as well as the historical figures in the field and the molecules they studied, before considering the current science and innovations in the field, and the interaction between biochemistry, biotechnology, and synthetic biology. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
The fourth edition of Soil Microbiology, Ecology and Biochemistry updates this widely used reference as the study and understanding of soil biota, their function, and the dynamics of soil organic matter has been revolutionized by molecular and instrumental techniques, and information technology. Knowledge of soil microbiology, ecology and biochemistry is central to our understanding of organisms and their processes and interactions with their environment. In a time of great global change and increased emphasis on biodiversity and food security, soil microbiology and ecology has become an increasingly important topic. Revised by a group of world-renowned authors in many institutions and disciplines, this work relates the breakthroughs in knowledge in this important field to its history as well as future applications. The new edition provides readable, practical, impactful information for its many applied and fundamental disciplines. Professionals turn to this text as a reference for fundamental knowledge in their field or to inform management practices. - New section on "Methods in Studying Soil Organic Matter Formation and Nutrient Dynamics" to balance the two successful chapters on microbial and physiological methodology - Includes expanded information on soil interactions with organisms involved in human and plant disease - Improved readability and integration for an ever-widening audience in his field - Integrated concepts related to soil biota, diversity, and function allow readers in multiple disciplines to understand the complex soil biota and their function