Intersection Homology & Perverse Sheaves

Intersection Homology & Perverse Sheaves

Author: Laurenţiu G. Maxim

Publisher: Springer Nature

Published: 2019-11-30

Total Pages: 278

ISBN-13: 3030276449

DOWNLOAD EBOOK

This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson–Bernstein–Deligne–Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito’s deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.


Intersection Cohomology

Intersection Cohomology

Author: Armand Borel

Publisher: Springer Science & Business Media

Published: 2009-05-21

Total Pages: 243

ISBN-13: 0817647651

DOWNLOAD EBOOK

This book is a publication in Swiss Seminars, a subseries of Progress in Mathematics. It is an expanded version of the notes from a seminar on intersection cohomology theory, which met at the University of Bern, Switzerland, in the spring of 1983. This volume supplies an introduction to the piecewise linear and sheaf-theoretic versions of that theory as developed by M. Goresky and R. MacPherson in Topology 19 (1980), and in Inventiones Mathematicae 72 (1983). Some familiarity with algebraic topology and sheaf theory is assumed.


Singular Intersection Homology

Singular Intersection Homology

Author: Greg Friedman

Publisher: Cambridge University Press

Published: 2020-09-24

Total Pages: 823

ISBN-13: 1107150744

DOWNLOAD EBOOK

The first expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains.


D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory

Author: Ryoshi Hotta

Publisher: Springer Science & Business Media

Published: 2007-11-07

Total Pages: 408

ISBN-13: 081764363X

DOWNLOAD EBOOK

D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.


Sheaves in Topology

Sheaves in Topology

Author: Alexandru Dimca

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 253

ISBN-13: 3642188680

DOWNLOAD EBOOK

Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.


Perverse Sheaves and Applications to Representation Theory

Perverse Sheaves and Applications to Representation Theory

Author: Pramod N. Achar

Publisher: American Mathematical Soc.

Published: 2021-09-27

Total Pages: 562

ISBN-13: 1470455978

DOWNLOAD EBOOK

Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.


Topological Invariants of Stratified Spaces

Topological Invariants of Stratified Spaces

Author: Markus Banagl

Publisher: Springer Science & Business Media

Published: 2007-02-16

Total Pages: 266

ISBN-13: 3540385878

DOWNLOAD EBOOK

The central theme of this book is the restoration of Poincaré duality on stratified singular spaces by using Verdier-self-dual sheaves such as the prototypical intersection chain sheaf on a complex variety. Highlights include complete and detailed proofs of decomposition theorems for self-dual sheaves, explanation of methods for computing twisted characteristic classes and an introduction to the author's theory of non-Witt spaces and Lagrangian structures.


Topology of Singular Spaces and Constructible Sheaves

Topology of Singular Spaces and Constructible Sheaves

Author: Jörg Schürmann

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 461

ISBN-13: 3034880618

DOWNLOAD EBOOK

This volume is based on the lecture notes of six courses delivered at a Cimpa Summer School in Temuco, Chile, in January 2001. Leading experts contribute with introductory articles covering a broad area in probability and its applications, such as mathematical physics and mathematics of finance. Written at graduate level, the lectures touch the latest advances on each subject, ranging from classical probability theory to modern developments. Thus the book will appeal to students, teachers and researchers working in probability theory or related fields.


Introduction to Soergel Bimodules

Introduction to Soergel Bimodules

Author: Ben Elias

Publisher: Springer Nature

Published: 2020-09-26

Total Pages: 588

ISBN-13: 3030488268

DOWNLOAD EBOOK

This book provides a comprehensive introduction to Soergel bimodules. First introduced by Wolfgang Soergel in the early 1990s, they have since become a powerful tool in geometric representation theory. On the one hand, these bimodules are fairly elementary objects and explicit calculations are possible. On the other, they have deep connections to Lie theory and geometry. Taking these two aspects together, they offer a wonderful primer on geometric representation theory. In this book the reader is introduced to the theory through a series of lectures, which range from the basics, all the way to the latest frontiers of research. This book serves both as an introduction and as a reference guide to the theory of Soergel bimodules. Thus it is intended for anyone who wants to learn about this exciting field, from graduate students to experienced researchers.