Interpretability for Industry 4.0

Interpretability for Industry 4.0

Author: Antonio Lepore

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9783031124037

DOWNLOAD EBOOK

This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry. Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.


Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches

Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches

Author: Antonio Lepore

Publisher: Springer Nature

Published: 2022-10-19

Total Pages: 130

ISBN-13: 3031124022

DOWNLOAD EBOOK

This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry. Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.


Interpretable Machine Learning

Interpretable Machine Learning

Author: Christoph Molnar

Publisher: Lulu.com

Published: 2020

Total Pages: 320

ISBN-13: 0244768528

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data

Interpretable Machine Learning and Generative Modeling with Mixed Tabular Data

Author: Kristin Blesch

Publisher:

Published: 2024

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Explainable artificial intelligence or interpretable machine learning techniques aim to shed light on the behavior of opaque machine learning algorithms, yet often fail to acknowledge the challenges real-world data imposes on the task. Specifically, the fact that empirical tabular datasets may consist of both continuous and categorical features (mixed data) and typically exhibit dependency structures is frequently overlooked. This work uses a statistical perspective to illuminate the far-reaching implications of mixed data and dependency structures for interpretability in machine learning. Several interpretability methods are advanced with a particular focus on this kind of data, evaluating their performance on simulated and real data sets. Further, this cumulative thesis emphasizes that generating synthetic data is a crucial subroutine for many interpretability methods. Therefore, this thesis also advances methodology in generative modeling concerning mixed tabular data, presenting a tree-based approach for density estimation and data generation, accompanied by a user-friendly software implementation in the Python programming language.


Interpretable Statistical Learning

Interpretable Statistical Learning

Author: Beomseok Seo

Publisher:

Published: 2021

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Interpretability of machine learning models is important in critical applications to attain trust of users. Despite their strong performance, black-box machine learning models often meet resistance in usage, especially in areas such as economics, social science, healthcare industry, and administrative decision making. This dissertation explores methods to improve 'human interpretability' for both supervised and unsupervised machine learning. I approach this topic by building statistical models with relatively low complexity and developing post-hoc model-agnostic tools. This dissertation consists of three projects. In the first project, we propose a new method to estimate a mixture of linear models (MLM) for regression or classification that is relatively easy to interpret. We use DNN as a proxy of the optimal prediction function so that MLM can be effectively estimated. We propose visualization methods and quantitative approaches to interpret the predictor by MLM. Experiments show that the new method allows us to trade-off interpretability and accuracy. MLM estimated under the guidance of a trained DNN fills the gap between a highly explainable linear statistical model and a highly accurate but difficult to interpret predictor. In the second project, we develop a new block-wise variable selection method for clustering by exploiting the latent states of the hidden Markov model on variable blocks or the Gaussian mixture model. Specifically, the variable blocks are formed by depth-first-search on a dendrogram created based on the mutual information between any pair of variables. It is demonstrated that the latent states of the variable blocks together with the mixture model parameters can represent the original data effectively and much more compactly. We thus cluster the data using the latent states and select variables according to the relationship between the states and the clusters. As true class labels are unknown in the unsupervised setting, we first generate more refined clusters, namely, semi-clusters, for variable selection and then determine the final clusters based on the dimension reduced data. The new method increases the interpretability of high-dimensional clustering by effectively reducing the model complexity and selecting variables while retains the comparable clustering accuracy to other widely used methods. In the third project, we propose a new framework to interpret and validate clustering results for any baseline methods. We exploit the optimal transport alignment and the bootstrapping method to quantify the variation of clustering results at the levels of both overall partitions and individual clusters. Set relationships between clusters such as one-to-one match, split, and merge can be revealed. A covering point set for each cluster, a concept kin to the confidence interval, is proposed. The tools we have developed here will help understand the model behavior of the baseline clustering method. Experimental results on both simulated and real datasets are provided. The corresponding R package OTclust is available on CRAN.


Machine Learning and Probabilistic Graphical Models for Decision Support Systems

Machine Learning and Probabilistic Graphical Models for Decision Support Systems

Author: Kim Phuc Tran

Publisher: CRC Press

Published: 2022-10-13

Total Pages: 330

ISBN-13: 100077144X

DOWNLOAD EBOOK

This book presents recent advancements in research, a review of new methods and techniques, and applications in decision support systems (DSS) with Machine Learning and Probabilistic Graphical Models, which are very effective techniques in gaining knowledge from Big Data and in interpreting decisions. It explores Bayesian network learning, Control Chart, Reinforcement Learning for multicriteria DSS, Anomaly Detection in Smart Manufacturing with Federated Learning, DSS in healthcare, DSS for supply chain management, etc. Researchers and practitioners alike will benefit from this book to enhance the understanding of machine learning, Probabilistic Graphical Models, and their uses in DSS in the context of decision making with uncertainty. The real-world case studies in various fields with guidance and recommendations for the practical applications of these studies are introduced in each chapter.


Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Author: Serg Masís

Publisher: Packt Publishing Ltd

Published: 2021-03-26

Total Pages: 737

ISBN-13: 1800206577

DOWNLOAD EBOOK

A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage them to build fairer, safer, and more reliable models Key Features Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book DescriptionDo you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What you will learn Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is for This book is primarily written for data scientists, machine learning developers, and data stewards who find themselves under increasing pressures to explain the workings of AI systems, their impacts on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a solid grasp on the Python programming language and ML fundamentals is needed to follow along.


Introduction to Statistical Relational Learning

Introduction to Statistical Relational Learning

Author: Lise Getoor

Publisher: MIT Press

Published: 2007

Total Pages: 602

ISBN-13: 0262072882

DOWNLOAD EBOOK

In 'Introduction to Statistical Relational Learning', leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data.


Rank-Based Methods for Shrinkage and Selection

Rank-Based Methods for Shrinkage and Selection

Author: A. K. Md. Ehsanes Saleh

Publisher: John Wiley & Sons

Published: 2022-03-22

Total Pages: 484

ISBN-13: 1119625394

DOWNLOAD EBOOK

Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning