Non-Linear Detection Algorithms for Mimo Multiplexing Systems

Non-Linear Detection Algorithms for Mimo Multiplexing Systems

Author: Wei Peng

Publisher:

Published: 2017-01-27

Total Pages:

ISBN-13: 9781361469446

DOWNLOAD EBOOK

This dissertation, "Non-linear Detection Algorithms for MIMO Multiplexing Systems" by Wei, Peng, 彭薇, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled "Non-linear Detection Algorithms for MIMO Multiplexing Systems" Submitted by Peng Wei for the degree of Doctor of Philosophy at The University of Hong Kong in November 2007 The multiple input multiple output (MIMO) technique has attracted a lot of interest due to its potential use in future high speed wireless communications. This thesis focuses on non-linear detection algorithms for MIMO multiplexing systems. The performance of maximum likelihood (ML) detection and successive interference cancellation (SIC) detection are analyzed, and a low-complexity adaptive QR decomposition associated M (QRD-M) algorithm is proposed. A novel method is proposed for the performance analysis of ML detection. In this method, the symbol error probability (SEP) of one transmitted signal is first expressed in terms of the SEPs conditioned on a set of error events corresponding to the other transmitted signals and the probabilities of those error events. By analyzing the post-detection signal to noise ratio (SNR), the conditional SEPs are expressed in closed-form and the SEPs are finally obtained by solving a set of equations. The effects of imperfect channel estimation and power allocation scheme (equal and unequal power allocations) are investigated. The accuracy of the proposed method is demonstrated by Monte-Carlo simulations. It is shown that the analytical results match the simulation ones irrespective of the SNR, which is an advantage over the existing methods where a significant gap generally exists between the analytical and simulation results in the low SNR region. The problem of performance analysis for zero-forcing (ZF) SIC detection is addressed. A method is presented to derive the SEP of the signals detected at each stage. First, the SEPs conditioned on the decision errors at the previous stages are determined in closed-form by analyzing the post-detection SNR and the statistics of the QR decomposed channel matrix. Then, the average SEP at each detection stage is given as the sum of the weighted conditional SEPs. Practical issues including channel estimation errors and the propagation of the decision errors from one detection stage to the next are taken into account. The accuracy of the analytical results is demonstrated by Monte-Carlo simulations. Finally, an adaptive low-complexity QRD-M algorithm is proposed. In the proposed algorithm, the number of candidates for each transmitted signal and the number of surviving paths at each stage are adaptively and independently controlled by an adjustable parameter according to the instantaneous channel conditions and the noise power. The adjustable parameter enables the system designer to compromise between system performance and computational complexity. By Monte-Carlo simulations, it is shown that the proposed algorithm can achieve comparable performance to that of the existing QRD-M algorithms with significantly reduced complexity, especially when modulation with large constellation size is utilized. The number of words: 417 DOI: 10.5353/th_b3955856 Subjects: Demodulation (Electronics) Algorithms MIMO systems Wireless communication systems


Wireless Communications Over Rapidly Time-Varying Channels

Wireless Communications Over Rapidly Time-Varying Channels

Author: Franz Hlawatsch

Publisher: Academic Press

Published: 2011-05-04

Total Pages: 457

ISBN-13: 0080922724

DOWNLOAD EBOOK

As a result of higher frequencies and increased user mobility, researchers and systems designers are shifting their focus from time-invariant models to channels that vary within a block. Wireless Communications Over Rapidly Time-Varying Channels explains the latest theoretical advances and practical methods to give an understanding of rapidly time varying channels, together with performance trade-offs and potential performance gains, providing the expertise to develop future wireless systems technology. As well as an overview of the issues of developing wireless systems using time-varying channels, the book gives extensive coverage to methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, as well as providing models and transceiver methods for time-varying ultra-wideband channels. - An introduction to time-varying channel models gives in a nutshell the important issues of developing wireless systems technology using time-varying channels - Extensive coverage of methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, enables development of high performance wireless systems - Chapters on transceiver design for OFDM and receiver algorithms for MIMO communication channels over time-varying channels, with an emphasis on modern iterative turbo-style architectures, demonstrates how these important technologies can optimize future wireless systems


Reduction of Implementation Complexity in MIMO-OFDM Decoding for V-BLAST Architecture

Reduction of Implementation Complexity in MIMO-OFDM Decoding for V-BLAST Architecture

Author: Tariq Nanji

Publisher:

Published: 2010

Total Pages: 67

ISBN-13:

DOWNLOAD EBOOK

This dissertation documents alternative designs of the Zero Forcing decoding algorithm with Successive Interference Cancellation (ZF-SIC) for use in Vertical Bell Laboratories Layered Space Time Architecture (V-BLAST) Multiple Input Multiple Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems, in an effort to reduce the computational complexity of the receiver. The development of a wireless platform utilizing this architecture intended for use in an indoor wireless multipath environment was created to analyze the multipath environment. This implementation is the result of efforts from several individuals within the CST group. My contributions are documented in this dissertation. In order to obtain channel state information (CSI), a training sequence is sent with each incoming frame. A pseudo-inverse operation is performed on the channel matrix and applied to each OFDM symbol that was received. Performing this operation on each tone and across each OFDM symbol is computationally inefficient in a MIMO configuration. If the number of pseudo-inverses can be reduced while maintaining acceptable levels of bit error, the processing time of each frame can be decreased. Traditionally, tests of the performance of ZF-SIC have been conducted with simulations modelling a multipath channel. In this thesis, CSI is observed using an open loop platform developed for MIMO-OFDM communications. The rate of change of the channel is observed for different multipath environments. The proposed methods of decoding require modifications to ZF-SIC. The suggested changes are only applicable to a MIMO OFDM based method of data transmission. The most effective method of reducing decoding complexity and maintaining an acceptable number of bit errors was observed to occur in the time domain rather than in the frequency domain. For selecting frames and averaging frames in the time domain it was determined that the optimal number of OFDM symbols per frame is 1932 and 174, respectively.


Efficient Detection and Scheduling for MIMO-OFDM Systems

Efficient Detection and Scheduling for MIMO-OFDM Systems

Author: Wei Liu

Publisher:

Published: 2012

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

Multiple-input multiple-output (MIMO) antennas can be exploited to provide high data rate using a limited bandwidth through multiplexing gain. MIMO combined with orthogonal frequency division multiplexing (OFDM) could potentially provide high data rate and high spectral efficiency in frequency-selective fading channels. MIMO-OFDM technology has been widely employed in modern communication systems, such as Wireless Local Area Network (WLAN), Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX). However, most of the conventional schemes either are computationally prohibitive or underutilize the full performance gain provided by the inherent merits of MIMO and OFDM techniques. In the first part of this dissertation, we firstly study the channel matrix inversion which is commonly required in various MIMO detection schemes. An algorithm that exploits second-order extrapolation in the time domain is proposed to efficiently reduce the computational complexity. This algorithm can be applied to both linear detection and non-linear detection such as ordered successive interference cancellation (OSIC) while maintaining the system performance. Secondly, we study the complexity reduction for Lattice Reduction Aided Detection (LRAD) of MIMO-OFDM systems. We propose an algorithm that exploits the inherent feature of unimodular transformation matrix that remains the same for relatively highly correlated frequency components. This algorithm effectively eliminates the redundant brute-force lattice reduction iterations among adjacent subcarriers. Thirdly, we analyze the impact of channel coherence bandwidth on two LRAD algorithms. Analytical and simulation results demonstrate that carefully setting the initial calculation interval according to the coherence bandwidth is essential for both algorithms. The second part of this dissertation focuses on efficient multi-user (MU) scheduling and coordination for the uplink of WLAN that uses MIMO-OFDM techniques. On one hand, conventional MU-MIMO medium access control (MAC) protocols require large overhead, which lowers the performance gain of concurrent transmissions rendered by the multi-packet reception (MPR) capability of MIMO systems. Therefore, an efficient MU-MIMO uplink MAC scheduling scheme is proposed for future WLAN. On the other hand, single-user (SU) MIMO achieves multiplexing gain in the physical (PHY) layer and MU-MIMO achieves multiplexing gain in the MAC layer. In addition, the average throughput of the system varies depending on the number of antennas and users, average payload sizes, and signal-to-noise-ratios (SNRs). A comparison on the performance between SU-MIMO and MU-MIMO schemes for WLAN uplink is hence conducted. Simulation results indicate that a dynamic switch between the SU-MIMO and MU-MIMO is of significance for higher network throughput of WLAN uplink.


Interference Cancellation Using Space-Time Processing and Precoding Design

Interference Cancellation Using Space-Time Processing and Precoding Design

Author: Feng Li

Publisher: Springer Science & Business Media

Published: 2012-07-11

Total Pages: 103

ISBN-13: 3642307124

DOWNLOAD EBOOK

Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available. This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method. Dr. Feng Li is a scientific researcher at Cornell University.


Interference Management in MIMO Networks

Interference Management in MIMO Networks

Author: Sudhanshu Gaur

Publisher:

Published: 2008

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Several efficient low complexity interference management techniques were developed for improving the performance of multiple-input multiple-output (MIMO) networks. Sub-optimal techniques involving optimal antenna selection-aided stream control were proposed for joint optimization of co-channel MIMO links in a space division multiple access (SDMA) network. Results indicated that the use of the SDMA scheme along with partial channel state information at the transmitters significantly reduces the signaling overhead with minimal loss in throughput performance. Next, a mean squared error (MSE) based antenna selection framework was presented for developing low complexity algorithms for finite complexity receivers. These selection algorithms were shown to provide reasonable bit-error rate performance while keeping the overall system complexity low. Furthermore, some new algebraic properties of linear orthogonal space-time block codes (OSTBCs) were utilized to develop a single-stage and minimum MSE optimal detector for two co-channel users employing unity rate real and derived rate-1/2 complex OSTBCs. A sub-optimal space-time interference cancellation (IC) technique was also developed for a spatial-multiplexing link subjected to Alamouti interference. The performance of proposed interference management techniques and their implications for future research are discussed.