Integration of Functional Oxides with Semiconductors

Integration of Functional Oxides with Semiconductors

Author: Alexander A. Demkov

Publisher: Springer Science & Business Media

Published: 2014-02-20

Total Pages: 284

ISBN-13: 146149320X

DOWNLOAD EBOOK

This book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. Intended for a multidisciplined audience, Integration of Functional Oxides with Semiconductors describes processing techniques that enable atomic-level control of stoichiometry and structure and reviews characterization techniques for films, interfaces and device performance parameters. Fundamental challenges involved in joining covalent and ionic systems, chemical interactions at interfaces, multi-element materials that are sensitive to atomic-level compositional and structural changes are discussed in the context of the latest literature. Magnetic, ferroelectric and piezoelectric materials and the coupling between them will also be discussed. GaN, SiC, Si, GaAs and Ge semiconductors are covered within the context of optimizing next-generation device performance for monolithic device processing.


Integration of Functional Oxides Onto Silicon Substrates

Integration of Functional Oxides Onto Silicon Substrates

Author: Hanu K. Arava

Publisher:

Published: 2014

Total Pages: 134

ISBN-13:

DOWNLOAD EBOOK

The purpose of this thesis is to investigate the integration of functional oxides onto silicon substrates using MBE and Spin-Coating techniques. Functionality is defined, by Materials Department of Imperial College of London, as any property in a material that is not load-bearing in nature. Examples of functionalities that are not load-bearing include magnetic, electric, electro-optic, pyroelectric and many more unique types of behavior. More-than-Moore is the primary motivation within the thesis. Unlike the standard Moore's Law predicting the doubling of semiconductor devices onto a single microchip, More-than-Moore looks into increasing functionality in a single microchip.


Functional Oxide Heterostructures on Semiconductors

Functional Oxide Heterostructures on Semiconductors

Author: Hosung Seo

Publisher:

Published: 2013

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

Complex oxides exhibiting a wide variety of novel functional properties such as ferromagnetism and ferroelectricity have been extensively studied during the past decades. Recent advances in the field of oxide heteroepitaxy have made it possible to create and control hybrid oxide heterostructures with abrupt epitaxial interfaces. The oxide heteroepitaxy with the capability of controlling interface composition, strain, length scales, etc. has opened the totally new and exciting scientific avenue and has offered potential device applications to be explored. Epitaxial integration of functional oxides on semiconductor such as Si (001) and Ge(001) is of great interest, as it potentially leads to further technological development of these interesting oxide systems. In this dissertation, using density functional theory we explore physics and chemistry of novel oxide heterostructures and issues related to the integration of functional oxides on semiconductors. Oxide materials that are studied in this dissertation include polar LaAlO3, high-k dielectric SrTiO3, photocatalytic anatase TiO2 and CoO, and strongly correlated magnetic oxide LaCoO3.


Epitaxial Functional Oxide Integration on Germanium

Epitaxial Functional Oxide Integration on Germanium

Author: Patrick Ponath

Publisher:

Published: 2017

Total Pages: 528

ISBN-13:

DOWNLOAD EBOOK

Germanium, with its higher hole and electron mobility is a potential candidate to replace silicon as a channel material in a field effect transistor in the future. The integration of high quality crystalline oxides on semiconductors still remains a challenge due to lattice defects, a lattice constant mismatch as well as a possible thermodynamic instability between the thin film and the substrate. In this work we report the integration of functional oxides on germanium, which exhibit a wide variety of useful physical properties such as ferromagnetism, superconductivity or ferroelectricity which are of high interest for future electronic devices as i.e. for the development of a ferroelectric field-effect transistor. The focus of this thesis lies on the study of the high-[kappa] and ferroelectric material barium titanate, grown on germanium (001) by using an oxide molecular beam epitaxy machine. Further characterization techniques as x-ray diffraction, x-ray reflectivity, x-ray photoelectron spectroscopy, atomic force microscopy and electrical measurements are used to study the properties of the oxide films and to obtain a deeper understanding of their interface qualities with the substrate. This research contributes significantly for the development of a ferroelectric field-effect transistor and oxide heterostructures on germanium in general.


Epitaxy of Crystalline Oxides for Functional Materials Integration on Silicon

Epitaxy of Crystalline Oxides for Functional Materials Integration on Silicon

Author: Gang Niu

Publisher:

Published: 2010

Total Pages: 231

ISBN-13:

DOWNLOAD EBOOK

Oxides form a class of material which covers almost all the spectra of functionalities : dielectricity, semiconductivity, metallicity superconductivity, non-linear optics, acoustics, piezoelectricity, ferroelectricity, ferromagnetism...In this thesis, crystalline oxides have beenintegrated on the workhorse of the semiconductor industry, the silicon, by Molecular Beam Epitaxy (MBE).The first great interest of the epitaxial growth of crystalline oxides on silicon consists in the application of "high-k" dielectric for future sub-22nm CMOS technology. Gadoliniumoxide was explored in detail as a promising candidate of the alternative of SiO2. The pseudomorphic epitaxial growth of Gd2O3 on Si (111) was realized by identifying the optimal growth conditions. The Gd2O3 films show good dielectric properties and particularly an EOTof 0.73nm with a leakage current consistent with the requirements of ITRS for the sub-22nmnodes. In addition, the dielectric behavior of Gd2O3 thin films was further improved by performing PDA treatments. The second research interest on crystalline oxide/Si platform results from its potential application for the "More than Moore" and "Heterogeneous integration" technologies. TheSrTiO3/Si (001) was intensively studied as a paradigm of the integration of oxides on semiconductors. The crystallinity, interface and surface qualities and relaxation process of the STO films on silicon grown at the optimal conditions were investigated and analyzed. Several optimized growth processes were carried out and compared. Finally a "substrate-like" STO thin film was obtained on the silicon substrate with good crystallinity and atomic flat surface. Based on the Gd2O3/Si and SrTiO3/Si templates, diverse functionalities were integrated on the silicon substrate, such as ferro-(piezo-)electricity (BaTiO3, PZT and PMN-PT),ferromagnetism (LSMO) and optoelectronics (Ge). These functional materials epitaxially grown on Si can be widely used for storage memories, lasers and solar cells, etc.


Functional Oxides

Functional Oxides

Author: Duncan W. Bruce

Publisher: John Wiley & Sons

Published: 2011-03-29

Total Pages: 413

ISBN-13: 1119972949

DOWNLOAD EBOOK

Functional oxides have a wide variety of applications in the electronic industry. The discovery of new metal oxides with interesting and useful properties continues to drive much research in chemistry, physics, and materials science. In Functional Oxides five topical areas have been selected to illustrate the importance of metal oxides in modern materials chemistry: Noncentrosymmetric Inorganic Oxide Materials Geometrically Frustrated Magnetic Materials Lithium Ion Conduction in Oxides Thermoelectric Oxides Transition Metal Oxides - Magnetoresistance and Half-Metallicity The contents highlight structural chemistry, magnetic and electronic properties, ionic conduction and other emerging areas of importance, such as thermoelectricity and spintronics. Functional Oxides covers these complex concepts in a clear and accessible manner providing an excellent introduction to this broad subject area.


Novel Compound Semiconductor Nanowires

Novel Compound Semiconductor Nanowires

Author: Fumitaro Ishikawa

Publisher: CRC Press

Published: 2017-10-17

Total Pages: 549

ISBN-13: 9814745774

DOWNLOAD EBOOK

One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.


Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides

Author: Gertjan Koster

Publisher: Woodhead Publishing

Published: 2022-04-22

Total Pages: 534

ISBN-13: 0081029462

DOWNLOAD EBOOK

Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites. Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications