This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.
The demands of increasingly complex embedded systems and associated performance computations have resulted in the development of heterogeneous computing architectures that often integrate several types of processors, analog and digital electronic components, and mechanical and optical components—all on a single chip. As a result, now the most prominent challenge for the design automation community is to efficiently plan for such heterogeneity and to fully exploit its capabilities. A compilation of work from internationally renowned authors, Model-Based Design for Embedded Systems elaborates on related practices and addresses the main facets of heterogeneous model-based design for embedded systems, including the current state of the art, important challenges, and the latest trends. Focusing on computational models as the core design artifact, this book presents the cutting-edge results that have helped establish model-based design and continue to expand its parameters. The book is organized into three sections: Real-Time and Performance Analysis in Heterogeneous Embedded Systems, Design Tools and Methodology for Multiprocessor System-on-Chip, and Design Tools and Methodology for Multidomain Embedded Systems. The respective contributors share their considerable expertise on the automation of design refinement and how to relate properties throughout this refinement while enabling analytic and synthetic qualities. They focus on multi-core methodological issues, real-time analysis, and modeling and validation, taking into account how optical, electronic, and mechanical components often interface. Model-based design is emerging as a solution to bridge the gap between the availability of computational capabilities and our inability to make full use of them yet. This approach enables teams to start the design process using a high-level model that is gradually refined through abstraction levels to ultimately yield a prototype. When executed well, model-based design encourages enhanced performance and quicker time to market for a product. Illustrating a broad and diverse spectrum of applications such as in the automotive aerospace, health care, consumer electronics, this volume provides designers with practical, readily adaptable modeling solutions for their own practice.
This book constitutes the refereed proceedings of the 10th International Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2019, held in Guangzhou, China, in December 2019. The 39 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 121 submissions. The papers deal with research results and development activities in all aspects of parallel architectures, algorithms and programming techniques.
This book gathers the proceedings of the 2017 DepCoS-RELCOMEX, an annual conference series that has been organized by the Department of Computer Engineering at the Faculty of Electronics, Wrocław University of Science and Technology, since 2006. Its mission is to continue the heritage of the other two cycles of events – the RELCOMEX conferences (1977–89) and Microcomputer Schools (1985–95) – so this year we can celebrate the 40th anniversary of its origins. In contrast to those preceding series, which were focused on conventional reliability analysis, the goal of DepCoS is to promote a more comprehensive approach to system performability, which is now commonly called dependability. This innovative research area provides answers to the latest challenges in reliability evaluation for contemporary complex systems. Its novelty is based on a multi-disciplinary approach to system theory, technology and maintenance of systems operating in real environments. Dependability analyses concentrate on the efficient completion of tasks, services and jobs by a system considered as a combination of technical, information and human assets, in contrast to “classical” reliability, which is generally limited to the analysis of technical resources and associated components and structures. The selection of papers for this volume illustrates the diversity of topics that need to be considered, from mathematical models and design methodologies through software engineering and data security issues, to practical engineering problems in technical systems. In addition, this edition of the conference hosted the 7th CrISS-DESSERT Workshop, which was devoted to the analysis and assurance of safety and cyber security in critical infrastructure and computer systems.
Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.
This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical interconnects, many stumbling blocks need to be addressed such as thin-film transmitter and detector, thermal management, process compatibility, reliability, cost effective fabrication process, and easy integration. The material presented eventually will relieve such concerns and make the integration of optical interconnection highly feasible. The hybrid integration of the optical interconnection layer and electrical layers is ongoing.
Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R&D efforts and dollars are increasingly focused on communication architecture design. On-Chip Communication Architecures is a comprehensive reference on concepts, research and trends in on-chip communication architecture design. It will provide readers with a comprehensive survey, not available elsewhere, of all current standards for on-chip communication architectures. - A definitive guide to on-chip communication architectures, explaining key concepts, surveying research efforts and predicting future trends - Detailed analysis of all popular standards for on-chip communication architectures - Comprehensive survey of all research on communication architectures, covering a wide range of topics relevant to this area, spanning the past several years, and up to date with the most current research efforts - Future trends that with have a significant impact on research and design of communication architectures over the next several years
This Festschrift is in honor of Marilyn Wolf, on the occasion of her 60th birthday. Prof. Wolf is a renowned researcher and educator in Electrical and Computer Engineering, who has made pioneering contributions in all of the major areas in Embedded, Cyber-Physical, and Internet of Things (IoT) Systems. This book provides a timely collection of contributions that cover important topics related to Smart Cameras, Hardware/Software Co-Design, and Multimedia applications. Embedded systems are everywhere; cyber-physical systems enable monitoring and control of complex physical processes with computers; and IoT technology is of increasing relevance in major application areas, including factory automation, and smart cities. Smart cameras and multimedia technologies introduce novel opportunities and challenges in embedded, cyber-physical and IoT applications. Advanced hardware/software co-design methodologies provide valuable concepts and tools for addressing these challenges. The diverse topics of the chapters in this Festschrift help to reflect the great breadth and depth of Marilyn Wolf's contributions in research and education. The chapters have been written by some of Marilyn’s closest collaborators and colleagues.
Current data centre networks, based on electronic packet switches, are experiencing an exponential increase in network traffic due to developments such as cloud computing. Optical interconnects have emerged as a promising alternative offering high throughput and reduced power consumption. Optical Interconnects for Data Centers reviews key developments in the use of optical interconnects in data centres and the current state of the art in transforming this technology into a reality. The book discusses developments in optical materials and components (such as single and multi-mode waveguides), circuit boards and ways the technology can be deployed in data centres. Optical Interconnects for Data Centers is a key reference text for electronics designers, optical engineers, communications engineers and R&D managers working in the communications and electronics industries as well as postgraduate researchers. - Summarizes the state-of-the-art in this emerging field - Presents a comprehensive review of all the key aspects of deploying optical interconnects in data centers, from materials and components, to circuit boards and methods for integration - Contains contributions that are drawn from leading international experts on the topic
Design technology to address the new and vast problem of heterogeneous embedded systems design while remaining compatible with standard “More Moore” flows, i.e. capable of simultaneously handling both silicon complexity and system complexity, represents one of the most important challenges facing the semiconductor industry today and will be for several years to come. While the micro-electronics industry, over the years and with its spectacular and unique evolution, has built its own specific design methods to focus mainly on the management of complexity through the establishment of abstraction levels, the emergence of device heterogeneity requires new approaches enabling the satisfactory design of physically heterogeneous embedded systems for the widespread deployment of such systems. Heterogeneous Embedded Systems, compiled largely from a set of contributions from participants of past editions of the Winter School on Heterogeneous Embedded Systems Design Technology (FETCH), proposes a necessarily broad and holistic overview of design techniques used to tackle the various facets of heterogeneity in terms of technology and opportunities at the physical level, signal representations and different abstraction levels, architectures and components based on hardware and software, in all the main phases of design (modeling, validation with multiple models of computation, synthesis and optimization). It concentrates on the specific issues at the interfaces, and is divided into two main parts. The first part examines mainly theoretical issues and focuses on the modeling, validation and design techniques themselves. The second part illustrates the use of these methods in various design contexts at the forefront of new technology and architectural developments.