This highly practical resource offers you an in-depth understanding of microwave front end integration and how it is applied in the avionics field. You find detailed guidance on circuit integration, including coverage of component miniaturization, hybrid and monolithic integrated circuits, and 3D design. The book addresses system integration with discussions on the combination of different avionic systems, single antenna design, top/bottom front end combination, and integration of passive and active antenna modules. This first-of-its-kind volume features unique material on novel structures of avionics front end, novel transmission lines, elements, and devices, as well as new strategies for microwave front-end design. Supported with nearly 200 illustrations and more than 160 equations, this book is a valuable professional reference and also serves well as a postgraduate textbook.
This book is a practical engineering guide to microwave material measurements for both laboratory and manufacturing/field environments, including nondestructive inspection (NDI) and nondestructive evaluation (NDE). The book covers proven methods for characterizing materials at microwave frequencies, including both resonant and wide-bandwidth techniques, and gives you the necessary theory and equations for implementing these methods. You’ll understand how to invert dielectric and/or magnetic material properties from free space transmission and reflection, and how to measure traveling wave attenuation. You’ll also know how to measure dielectric and/or magnetic material properties from transmission line fixtures, and learn how to use computational electromagnetic modeling with a measurement fixture. The book shows you how to build and use microwave NDE equipment for radomes and/or structural dielectric materials. This is an excellent resource for Engineers/scientists conducting or analyzing RF/Microwave/MMW material measurements for applications in electromagnetic materials, as well as those who are developing or applying microwave non-destructive evaluation (NDE) methods to their manufacturing problems.
Substrate Integrated Suspended Line Circuits and Systems provides a systematic overview of the new transmission line - the substrate-integrated suspension line (SISL). It details the fundamentals and classical application examples of the SISL. The basic SISL concept and structure, various passive circuits and active circuits, and front-end sub-systems are systematically introduced. Featuring research on topics such as high-performance RF/microwave/mm-wave circuits and system, this book is ideal for researchers, engineers, scientists, scholars, educators, and students. Since transmission line is a fundamental component of microwave and mm-wave circuits, the properties of a transmission line, such as losses, size, and dispersion, are vital to the performance of the whole system. Suspended line has been proved to be an excellent transmission line, as it has attractive features such as low loss, weak dispersion, high power capacity, and low effective dielectric constant. However, Conventional waveguide suspended line circuits require metal housing to form air cavities which is Substrate Integrated Suspended Line Circuits and Systems essential to the operation of suspended lines circuits. Also, the metal shell should provide mechanical support and shielding, which contribute to large size and heavy weight. Meanwhile, precise mechanical fabrication and assembling are strongly required, which brings difficulties to the design and fabrication of conventional suspended line circuits, and the manufacturing cost of suspended line circuits increases correspondingly. In this book, we will introduce a new platform of high-performance transmission line, i.e. substrate integrated suspended line (SISL). SISL keeps all the merits of the suspended line while overcomes the drawbacks of conventional waveguide suspended line circuits. Moreover, it is self-packaged and highly integrated. The basic SISL concept and structure, various passive circuits and active circuits, and front-end sub-systems will be systematically introduced. Featuring research on topics such as high-performance RF/microwave/mm-wave circuits and system, this book is ideally designed for researchers, engineers, scientists, scholars, educators, and students.
This volume contains forty-one revised and extended research articles, written by prominent researchers participating in the International Conference on Aeronautical Sciences, Engineering and Technology 2023, held in Muscat, October 3-5 2023. It focuses on the latest research developments in aeronautical applications, avionics systems, advanced aerodynamics, atmospheric chemistry, emerging technologies, safety management, unmanned aerial vehicles, and industrial applications. This book offers the state of the art of notable advances in engineering technologies and aviation applications and serves as an excellent source of reference for researchers and graduate students.
This comprehensive new resource presents a detailed look at the modeling and simulation of microwave semiconductor control devices and circuits. Fundamental PIN, MOSFET, and MESFET nonlinear device modeling are discussed, including the analysis of transient and harmonic behavior. Considering various control circuit topologies, the book analyzes a wide range of models, from simple approximations, to sophisticated analytical approaches. Readers find clear examples that provide guidance in how to use specific modeling techniques for their challenging projects in the field. Numerous illustrations help practitioners better understand important device and circuit behavior, revealing the relationship between key parameters and results. This authoritative volume covers basic and complex mathematical models for the most common semiconductor control elements used in today’s microwave and RF circuits and systems.
This new resource presents readers with all relevant information and comprehensive design methodology of wideband amplifiers. This book specifically focuses on distributed amplifiers and their main components, and presents numerous RF and microwave applications including well-known historical and recent architectures, theoretical approaches, circuit simulation, and practical implementation techniques. A great resource for practicing designers and engineers, this book contains numerous well-known and novel practical circuits, architectures, and theoretical approaches with detailed description of their operational principles.
Here at Remington, many people are curious about this powerful book commonly known as Inspiring the Youth of America. Well, as you may know, our youth today in America are in dire need of mentorship and guidance. This book is a whole new step forward for all of us as a civilization. For many years, and even today, young Americans wander aimlessly in a pool of confusion. They end up in meaningless careers with no past, no future, and nothing to hope for. Undoubtedly, the end result is misery and despair. The end result is poverty and surely a feeling of emptiness. Well, we at Remington, after interviewing over thirty thousand professionals, were surprised to find that many successful professionals were disgusted with vanity publications. They were disappointed with the meaningless dribble of a phone book–type registry that possibly required a magnifying glass just to read. But surprisingly enough, these professionals encouraged any use of their biography for humanitarian purposes. Undoubtedly, mentorship for our youth fell into that category. So there it was born. Our proudest moment as publishers was laid out before us. But there was one big problem. All these people needed to be interviewed in depth, and generic biographies certainly would not inspire. So with that, we swallowed hard, and our staff got to work. Yes, it was and still is a grueling, time-consuming mission and undertaking. But in the end, as you may witness as you read this book, the content is quite spectacular and certainly worth the effort. We would also like to mention that the participants in this book also spent much time sending us information and encouraging us to make this book worthy of their efforts. Now it was up to us to uphold the dignity of these professionals and forge forward into a future where students can explore their lives with the ability to fulfill their own potentials. With that, this book is presented to you today, and we hope that you share in our dream to build a better America from where it really matters—our youth.
Written by an internationally recognized as an expert on the subject of microwave (MW) tubes, this book presents and describes the many types of microwave tubes, and despite competition from solid-state devices (those using GaN, SiC, et cetera), which continue to be used widely and find new applications in defense, communications, medical, and industrial drying. Helix traveling wave tubes (TWTs), as well as coupled cavity TWTs are covered. Klystrons, and how they work, are described, along with the physics behind it and examples of devices and their uses. Vacuum electron devices are explained in detail and examines the harsh environment that must exist in tubes if they are to operate properly. The secondary emission process and its role in the operation of crossed-field devices is also discussed. The design of collectors for linear-beam tubes, including power dissipation and power recovery, are explored. Discussions of important noise sources and techniques that can be used to minimize their effects are also included. Presented in full color, this book contains a balance of practical and theoretical material so that those new to microwave tubes as well as experienced microwave tube technicians, engineers, and managers can benefit from its use.
Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.
The first of its kind, Microwave Techniques in Superconducting Quantum Computers introduces microwave and quantum engineers to essential practical techniques and theoretical foundations crucial for operating and implementing hardware in superconducting quantum processors. This practical resource covers an extensive range of topics, including Introduction to Quantum Physics, Introduction to Quantum Computing, Superconducting Qubits, Microwave Systems, Microwave Components, Principles of Electromagnetic Compatibility, Control Hardware for Superconducting Qubits, and Principles of Cryogenics. Such technical knowledge equips the reader with essential skills to succeed in the demanding industries and research settings surrounding quantum technologies. With clearly outlined learning objectives and coherent explanations of intricate concepts, this is a must-have reference for a wide spectrum of professionals, including microwave and quantum engineers, technical managers, technical sales engineers in quantum computing and microwave companies, as well as newcomers entering this field. To enrich the reader's experience, this book offers additional complementary content accessible via www.quaxys.com/book.