A thorough and practical introduction to inductive logic with a focus on arguments and the rules used for making inductive inferences. This textbook offers a thorough and practical introduction to inductive logic. The book covers a range of different types of inferences with an emphasis throughout on representing them as arguments. This allows the reader to see that, although the rules and guidelines for making each type of inference differ, the purpose is always to generate a probable conclusion. After explaining the basic features of an argument and the different standards for evaluating arguments, the book covers inferences that do not require precise probabilities or the probability calculus: the induction by confirmation, inference to the best explanation, and Mill's methods. The second half of the book presents arguments that do require the probability calculus, first explaining the rules of probability, and then the proportional syllogism, inductive generalization, and Bayes' rule. Each chapter ends with practice problems and their solutions. Appendixes offer additional material on deductive logic, odds, expected value, and (very briefly) the foundations of probability. Argument and Inference can be used in critical thinking courses. It provides these courses with a coherent theme while covering the type of reasoning that is most often used in day-to-day life and in the natural, social, and medical sciences. Argument and Inference is also suitable for inductive logic and informal logic courses, as well as philosophy of sciences courses that need an introductory text on scientific and inductive methods.
The state of the art of the bioengineering aspects of the morphology of microorganisms and their relationship to process performance are described in this volume. Materials and methods of the digital image analysis and mathematical modeling of hyphal elongation, branching and pellet formation as well as their application to various fungi and actinomycetes during the production of antibiotics and enzymes are presented.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Although Inductive Logic Programming (ILP) is generally thought of as a research area at the intersection of machine learning and computational logic, Bergadano and Gunetti propose that most of the research in ILP has in fact come from machine learning, particularly in the evolution of inductive reasoning from pattern recognition, through initial approaches to symbolic machine learning, to recent techniques for learning relational concepts. In this book they provide an extended, up-to-date survey of ILP, emphasizing methods and systems suitable for software engineering applications, including inductive program development, testing, and maintenance. Inductive Logic Programming includes a definition of the basic ILP problem and its variations (incremental, with queries, for multiple predicates and predicate invention capabilities), a description of bottom-up operators and techniques (such as least general generalization, inverse resolution, and inverse implication), an analysis of top-down methods (mainly MIS and FOIL-like systems), and a survey of methods and languages for specifying inductive bias. Logic Programming series
Inductive Logic is number ten in the 11-volume Handbook of the History of Logic. While there are many examples were a science split from philosophy and became autonomous (such as physics with Newton and biology with Darwin), and while there are, perhaps, topics that are of exclusively philosophical interest, inductive logic — as this handbook attests — is a research field where philosophers and scientists fruitfully and constructively interact. This handbook covers the rich history of scientific turning points in Inductive Logic, including probability theory and decision theory. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in the history of logic, the history of philosophy, and any discipline, such as mathematics, computer science, cognitive psychology, and artificial intelligence, for whom the historical background of his or her work is a salient consideration. - Chapter on the Port Royal contributions to probability theory and decision theory - Serves as a singular contribution to the intellectual history of the 20th century - Contains the latest scholarly discoveries and interpretative insights
Inductive Logic is a ‘thematic compilation’ by Avi Sion. It collects in one volume many (though not all) of the essays, that he has written on this subject over a period of some 23 years, which all demonstrate the possibility and conditions of validity of human knowledge, the utility and reliability of human cognitive means when properly used, contrary to the skeptical assumptions that are nowadays fashionable. This volume includes essays on the laws of thought, credibility, logical modality, contextuality, adduction, theory formation and selection, induction of actual and modal propositions, factorial induction (factor selection and formula revision), the phenomenological approach, experience, conceptualization, generalization and particularization, causation and its determinations, volition (freewill) and influences thereon, negation, and existential import.
This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.