This book describes the framework of inductive dependency parsing, a methodology for robust and efficient syntactic analysis of unrestricted natural language text. Coverage includes a theoretical analysis of central models and algorithms, and an empirical evaluation of memory-based dependency parsing using data from Swedish and English. A one-stop reference to dependency-based parsing of natural language, it will interest researchers and system developers in language technology, and is suitable for graduate or advanced undergraduate courses.
This book describes the framework of inductive dependency parsing, a methodology for robust and efficient syntactic analysis of unrestricted natural language text. Coverage includes a theoretical analysis of central models and algorithms, and an empirical evaluation of memory-based dependency parsing using data from Swedish and English. A one-stop reference to dependency-based parsing of natural language, it will interest researchers and system developers in language technology, and is suitable for graduate or advanced undergraduate courses.
Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it closes with a few words on current trends and future prospects of dependency parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science, as well as some knowledge of parsing methods for constituency-based representations. Table of Contents: Introduction / Dependency Parsing / Transition-Based Parsing / Graph-Based Parsing / Grammar-Based Parsing / Evaluation / Comparison / Final Thoughts
Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it closes with a few words on current trends and future prospects of dependency parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science, as well as some knowledge of parsing methods for constituency-based representations. Table of Contents: Introduction / Dependency Parsing / Transition-Based Parsing / Graph-Based Parsing / Grammar-Based Parsing / Evaluation / Comparison / Final Thoughts
This monograph gives a complete overview of the techniques and the methods for semantics-aware content representation and shows how to apply such techniques in various use cases, such as recommender systems, user profiling and social media analysis. Throughout the book, the authors provide an extensive analysis of the techniques currently proposed in the literature and cover all the available tools and libraries to implement and exploit such methodologies in real-world scenarios. The book first introduces the problem of information overload and the reasons why content-based information needs to be taken into account. Next, the basics of Natural Language Processing are provided, by describing operations such as tokenization, stopword removal, lemmatization, stemming, part-of-speech tagging, along with the main problems and issues. Finally, the book describes the different approaches for semantics-aware content representation: such approaches are split into ‘exogenous’ and ‘endogenous’ ones, depending on whether external knowledge sources as DBpedia or geometrical models and distributional semantics are used, respectively. To conclude, several successful use cases and an extensive list of available tools and resources to implement the approaches are shown. Semantics in Adaptive and Personalised Systems definitely fills the gap between the extensive literature on content-based recommender systems, natural language processing, and the different types of semantics-aware representations.
This book constitutes the refereed proceedings of the 6th International Conference on Natural Language Processing, GoTAL 2008, Gothenburg, Sweden, August 2008. The 44 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 107 submissions. The papers address all current issues in computational linguistics and monolingual and multilingual intelligent language processing - theory, methods and applications.
Computer parsing technology, which breaks down complex linguistic structures into their constituent parts, is a key research area in the automatic processing of human language. This volume is a collection of contributions from leading researchers in the field of natural language processing technology, each of whom detail their recent work which includes new techniques as well as results. The book presents an overview of the state of the art in current research into parsing technologies, focusing on three important themes: dependency parsing, domain adaptation, and deep parsing. The technology, which has a variety of practical uses, is especially concerned with the methods, tools and software that can be used to parse automatically. Applications include extracting information from free text or speech, question answering, speech recognition and comprehension, recommender systems, machine translation, and automatic summarization. New developments in the area of parsing technology are thus widely applicable, and researchers and professionals from a number of fields will find the material here required reading. As well as the other four volumes on parsing technology in this series this book has a breadth of coverage that makes it suitable both as an overview of the field for graduate students, and as a reference for established researchers in computational linguistics, artificial intelligence, computer science, language engineering, information science, and cognitive science. It will also be of interest to designers, developers, and advanced users of natural language processing systems, including applications such as spoken dialogue, text mining, multimodal human-computer interaction, and semantic web technology.
This book brings together work on Turkish natural language and speech processing over the last 25 years, covering numerous fundamental tasks ranging from morphological processing and language modeling, to full-fledged deep parsing and machine translation, as well as computational resources developed along the way to enable most of this work. Owing to its complex morphology and free constituent order, Turkish has proved to be a fascinating language for natural language and speech processing research and applications. After an overview of the aspects of Turkish that make it challenging for natural language and speech processing tasks, this book discusses in detail the main tasks and applications of Turkish natural language and speech processing. A compendium of the work on Turkish natural language and speech processing, it is a valuable reference for new researchers considering computational work on Turkish, as well as a one-stop resource for commercial and research institutions planning to develop applications for Turkish. It also serves as a blueprint for similar work on other Turkic languages such as Azeri, Turkmen and Uzbek.
This book constitutes the thoroughly refereed post-conference proceedings of the Joint Meeting of the 2nd Luxembourg-Polish Symposium on Security and Trust and the 19th International Conference Intelligent Information Systems, held as International Joint Confererence on Security and Intelligent Information Systems, SIIS 2011, in Warsaw, Poland, in June 2011. The 29 revised full papers presented together with 2 invited lectures were carefully reviewed and selected from 60 initial submissions during two rounds of selection and improvement. The papers are organized in the following three thematic tracks: security and trust, data mining and machine learning, and natural language processing.
Since 2002, FoLLI has awarded an annual prize for outstanding dissertations in the fields of Logic, Language and Information. This book is based on the PhD thesis of Marco Kuhlmann, joint winner of the E.W. Beth dissertation award in 2008. Kuhlmann’s thesis lays new theoretical foundations for the study of non-projective dependency grammars. These grammars are becoming increasingly important for approaches to statistical parsing in computational linguistics that deal with free word order and long-distance dependencies. The author provides new formal tools to define and understand dependency grammars, presents two new dependency language hierarchies with polynomial parsing algorithms, establishes the practical significance of these hierarchies through corpus studies, and links his work to the phrase-structure grammar tradition through an equivalence result with tree-adjoining grammars. The work bridges the gaps between linguistics and theoretical computer science, between theoretical and empirical approaches in computational linguistics, and between previously disconnected strands of formal language research.