This volume details a comprehensive set of methods and tools for Hi-C data processing, analysis, and interpretation. Chapters cover applications of Hi-C to address a variety of biological problems, with a specific focus on state-of-the-art computational procedures adopted for the data analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Hi-C Data Analysis: Methods and Protocols aims to help computational and molecular biologists working in the field of chromatin 3D architecture and transcription regulation.
Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences brings together two very important fields in pharmaceutical sciences that have been mostly seen as diverging from each other: chemoinformatics and bioinformatics. As developing drugs is an expensive and lengthy process, technology can improve the cost, efficiency and speed at which new drugs can be discovered and tested. This book presents some of the growing advancements of technology in the field of drug development and how the computational approaches explained here can reduce the financial and experimental burden of the drug discovery process. This book will be useful to pharmaceutical science researchers and students who need basic knowledge of computational techniques relevant to their projects. Bioscientists, bioinformaticians, computational scientists, and other stakeholders from industry and academia will also find this book helpful. - Provides practical information on how to choose and use appropriate computational tools - Presents the wide, intersecting fields of chemo-bio-informatics in an easily-accessible format - Explores the fundamentals of the emerging field of chemoinformatics and bioinformatics
The determination of protein function has been a major goal of molecular biology since the founding of the discipline. However, as we learn more about gene function, we discover that the context within which a gene is expressed controls the specific function of that gene. It has become critical to establish the background in which gene function is determined and to perform experiments in multiple applicable backgrounds. In Gene Function Analysis, Second Edition, a number of computational and experimental techniques are presented for identifying not only the function of an individual gene, but also the partners that work with that gene. The theme of data integration runs strongly through the computational techniques, with many focusing on gathering data from different sources and different biomolecular types. Experimental techniques have evolved to determine function in specific tissues and at specific times during development. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Gene Function Analysis, Second Edition seeks to serve both professionals and novices with a growing understanding of the complexity of gene function.
Data Mining for Genomics and Proteomics uses pragmatic examples and a complete case study to demonstrate step-by-step how biomedical studies can be used to maximize the chance of extracting new and useful biomedical knowledge from data. It is an excellent resource for students and professionals involved with gene or protein expression data in a variety of settings.
Are we satisfied with the rate of drug development? Are we happy with the drugs that come to market? Are we getting our money s worth in spending for basic biomedical research? In Translational Systems Biology, Drs. Yoram Vodovotz and Gary An address these questions by providing a foundational description the barriers facing biomedical research today and the immediate future, and how these barriers could be overcome through the adoption of a robust and scalable approach that will form the underpinning of biomedical research for the future. By using a combination of essays providing the intellectual basis of the Translational Dilemma and reports of examples in the study of inflammation, the content of Translational Systems Biology will remain relevant as technology and knowledge advances bring broad translational applicability to other diseases. Translational systems biology is an integrated, multi-scale, evidence-based approach that combines laboratory, clinical and computational methods with an explicit goal of developing effective means of control of biological processes for improving human health and rapid clinical application. This comprehensive approach to date has been utilized for in silico studies of sepsis, trauma, hemorrhage, and traumatic brain injury, acute liver failure, wound healing, and inflammation. Provides an explicit, reasoned, and systematic approach to dealing with the challenges of translational science across disciplines Establishes the case for including computational modeling at all stages of biomedical research and healthcare delivery, from early pre-clinical studies to long-term care, by clearly delineating efficiency and costs saving important to business investment Guides readers on how to communicate across domains and disciplines, particularly between biologists and computational researchers, to effectively develop multi- and trans-disciplinary research teams "
Animal Biotechnology introduces applications of animal biotechnology and implications for human health and welfare. It begins with an introduction to animal cell cultures and genome sequencing analysis and provides readers with a review of available cell and molecular tools. Topics here include the use of transgenic animal models, tissue engineering, nanobiotechnology, and proteomics. The book then delivers in-depth examples of applications in human health and prospects for the future, including cytogenetics and molecular genetics, xenografts, and treatment of HIV and cancers. All this is complemented by a discussion of the ethical and safety considerations in the field.Animal biotechnology is a broad field encompassing the polarities of fundamental and applied research, including molecular modeling, gene manipulation, development of diagnostics and vaccines, and manipulation of tissue. Given the tools that are currently available and the translational potential for these studies, animal biotechnology has become one of the most essential subjects for those studying life sciences. - Highlights the latest biomedical applications of genetically modified and cloned animals with a focus on cancer and infectious diseases - Provides firsthand accounts of the use of biotechnology tools, including molecular markers, stem cells, and tissue engineering
The interaction between biology and evolution has been the subject of great interest in recent years. Because evolution is such a highly debated topic, a biologically oriented discussion will appeal not only to scientists and biologists but also to the interested lay person. This topic will always be a subject of controversy and therefore any breaking information regarding it is of great interest.The author is a recognized expert in the field of developmental biology and has been instrumental in elucidating the relationship between biology and evolution. The study of evolution is of interest to many different kinds of people and Genomic Regulatory Systems: In Development and Evolution is written at a level that is very easy to read and understand even for the nonscientist.* Contents Include* Regulatory Hardwiring: A Brief Overview of the Genomic Control Apparatus and Its Causal Role in Development and Evolution * Inside the Cis-Regulatory Module: Control Logic and How the Regulatory Environment Is Transduced into Spatial Patterns of Gene Expression* Regulation of Direct Cell-Type Specification in Early Development* The Secret of the Bilaterians: Abstract Regulatory Design in Building Adult Body Parts* Changes That Make New Forms: Gene Regulatory Systems and the Evolution of Body Plans
This book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, and predicting 3D genome structur
Systems biology is a term used to describe a number of trends in bioscience research and a movement that draws on those trends. This volume in the Methods in Enzymology series comprehensively covers the methods in systems biology. With an international board of authors, this volume is split into sections that cover subjects such as machines for systems biology, protein production and quantification for systems biology, and enzymatic assays in systems biology research. This volume in the Methods in Enzymology series comprehensively covers the methods in systems biology With an international board of authors, this volume is split into sections that cover subjects such as machines for systems biology, protein production and quantification for systems biology, and enzymatic assays in systems biology research