Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
The book is a concise guide dealing with the subject of air turbulence and its methods of detection with particular applications to aviation turbulence. It begins with a general description of turbulence and provides a background into the nature and causes of atmospheric turbulence that affect aircraft motion, giving updates on the state-of-the-art research on clear air turbulence (CAT). Important physical processes leading to the Kelvin-Helmholtz instability, a primary producer of CAT, are also explained. The several categories of CAT along with its impact on commercial aviation are also presented in a separate chapter, with particular emphasis on the structural damages to planes and injuries. The central theme of the book deals with both the earlier and the latest CAT detecting methods and techniques for remote and in situ sensing and forecasting. A concise presentation of new technologies for reducing aviation weather-related accidents is also offered. A chapter on the weather accident prevention project of the NASA aviation safety program is also included. Additionally, the book ends with a full description of the recent research activities on CAT and future challenges in turbulence detection, prediction and avoidance.
Injuries due to air turbulence has increased recently, therefore there is considerable concern and interest in understanding and detecting it more accurately. Presently hardly any research deals with air turbulence detection using remote sensing images. Most works use conventional optical remote sensing data with classical methods such as a library spectral signature, band ratio, and principal component analysis without designating new methods and technology. Very little research has attempted to implement optical and microwave remote sensing images for air turbulence detections. This book provides new image processing procedures for air turbulence detection using advanced remote sensing images and quantum image processing. Currently, there is a huge gap between research work in the field of air turbulence detection and advanced remote sensing technology. Most of the theories are not operated in terms of software modules. Most of the software packages in the field of remote sensing images cannot deal with advanced image processing techniques in air turbulence detections due to heavy mathematics work. In this view, this book fills a gap between advanced remote sensing technology and air turbulence detection. For instance, quantum image processing with a new generation of remote sensing technology such as RADARSAT-2 SAR images is also implemented to provide accurate air turbulence detections.
This book brings together papers from the 2019 International Conference on Communications, Signal Processing, and Systems, which was held in Urumqi, China, on July 20–22, 2019. Presenting the latest developments and discussing the interactions and links between these multidisciplinary fields, the book spans topics ranging from communications to signal processing and systems. It is chiefly intended for undergraduate and graduate students in electrical engineering, computer science and mathematics, researchers and engineers from academia and industry, as well as government employees.
Captain Bunn founded SOAR to develop effective methods for dealing with flight anxiety. Therapists who have found this phobia difficult to treat will find everything they need to give their clients success. Anxious flyers who have “tried everything” to no avail can look forward to joining the nearly 10,000 graduates of the SOAR program who now have the whole world open to them as they fly anxiety free wherever they want. This approach begins by explaining how anxiety, claustrophobia, and panic are caused when noises, motions—or even the thought of flying—trigger excessive stress hormones. Then, to stop this problem, Captain Bunn takes the reader step-by-step through exercises that permanently and automatically control these feelings. He also explains how flying works, why it is safe, and teaches flyers how to strategically plan their flight, choose the right airlines, meet the captain, and so on. Through this program, Captain Bunn has helped thousands overcome their fear of flying. Now his book arms readers with the information they need to control their anxiety and fly comfortably.
Modern air and space craft demand a huge variety of sensing elements for detecting and controlling their behavior and operation. These sensors often differ significantly from those designed for applications in automobile, ship, railway, and other forms of transportation, and those used in industrial, chemical, medical, and other areas. This book offers insight into an appropriate selection of these sensors and describes their principles of operation, design, and achievable performance along with particulars of their construction. Drawn from the activities of the International Federation of Automatic Control (IFAC), especially its Aerospace Technical Committee, the book provides details on the majority of sensors for aircraft and many for spacecraft, satellites, and space probes. It is written by an international team of twelve authors representing four countries from Eastern and Western Europe and North America, all with considerable experience in aerospace sensor and systems design. Highlights include: • coverage of aerospace vehicle classification, specific design criteria, and the requirements of onboard systems and sensors; • reviews of airborne flight parameter sensors, weather sensors and collision avoidance devices; • discussions on the important role of inertial navigation systems (INS) and separate gyroscopic sensors for aerospace vehicle navigation and motion control; • descriptions of engine parameter information collection systems, including fuel quantity and consumption sensors, pressure pick-ups, tachometers, vibration control, and temperature sensors; and • descriptions and examples of sensor integration.