This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: An in-depth discussion of the global water cycle Approaches to various problems in climate, weather, hydrology, and agriculture Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale
Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. - Presents new approaches in the field, along with further research opportunities, based on the latest satellite data - Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences - Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field
Remote Sensing of Drought: Innovative Monitoring Approaches presents emerging remote sensing-based tools and techniques that can be applied to operational drought monitoring and early warning around the world. The first book to focus on remote sensing and drought monitoring, it brings together a wealth of information that has been scattered throughout the literature and across many disciplines. Featuring contributions by leading scientists, it assembles a cross-section of globally applicable techniques that are currently operational or have potential to be operational in the near future. The book explores a range of applications for monitoring four critical components of the hydrological cycle related to drought: vegetation health, evapotranspiration, soil moisture and groundwater, and precipitation. These applications use remotely sensed optical, thermal, microwave, radar, and gravity data from instruments such as AMSR-E, GOES, GRACE, MERIS, MODIS, and Landsat and implement several advanced modeling and data assimilation techniques. Examples show how to integrate this information into routine drought products. The book also examines the role of satellite remote sensing within traditional drought monitoring, as well as current challenges and future prospects. Improving drought monitoring is becoming increasingly important in addressing a wide range of societal issues, from food security and water scarcity to human health, ecosystem services, and energy production. This unique book surveys innovative remote sensing approaches to provide you with new perspectives on large-area drought monitoring and early warning.
This book describes the algorithms, validation and preliminary analysis of the Global LAnd Surface Satellite (GLASS) products, a long-term, high-quality dataset that is now freely available worldwide to government organizations and agencies, scientific research institutions, students and members of the general public. The GLASS products include leaf area index, broadband albedo, broadband emissivity, downward shortwave radiation and photosynthetically active radiation. The first three GLASS products cover 1981 to 2012 with 1km and 5km spatial resolutions and 8-day temporal resolution, and the last two GLASS products span 2008 to 2010 with 3-hour temporal resolution and 5km spatial resolution. These GLASS products are unique. The first three are spatially continuous and cover the longest period of time among all current similar satellite products. The other two products are the highest spatial-resolution global radiation products from satellite observations that are currently available. These products can be downloaded from Beijing Normal University at http://glass-product.bnu.edu.cn/ and the University of Maryland Global Land Cover Facility at http://www.glcf.umd.edu/ The GLASS products are the outcome of a key research project entitled “Generation & Applications of Global Products of Essential Land Variables”, supported by funding from the High-Tech Research and Development Program of China and involving dozens of institutions and nearly one hundred scientists and researchers. Following an introduction, the book contains five chapters corresponding to these five GLASS products: background, algorithm, quality control and validation, preliminary analysis and applications. It discusses the long-term environmental changes detected from the GLASS products and other data sources at both global and local scales and also provides detailed analysis of regional hotspots where environmental changes are mainly associated with climate change, drought, land-atmosphere interactions, and human activities. The book is based primarily on a set of published journal papers about these five GLASS products and includes updated information. Since these products have now begun to be widely used, this book is an essential reference document. It is also a very helpful resource to anyone interested in satellite remote sensing and its applications.
This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets. Chapter “TAMSAT” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
No other book can offer such a powerful tool to understand the basics of remote sensing for precipitation, to make use of existing products and to have a glimpse of the near future missions and instruments. This book features state-of-the-art rainfall estimation algorithms, validation strategies, and precipitation modeling. More than 20 years after the last book on the subject the worldwide precipitation community has produced a comprehensive overview of its activities, achievements, ongoing research and future plans.
This book presents current applications of remote sensing techniques for clouds and precipitation for the benefit of students, educators, and scientists. It covers ground-based systems such as weather radars and spaceborne instruments on satellites. Measurements and modeling of precipitation are at the core of weather forecasting, and long-term observations of the cloud system are vital to improving atmospheric models and climate projections. The first section of the book focuses on the use of ground-based weather radars to observe and measure precipitation and to detect and forecast storms, thunderstorms, and tornadoes. It also discusses the observation of clouds using ground-based millimeter radar. The second part of the book concentrates on spaceborne remote sensing of clouds and precipitation. It includes cases from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, using satellite radars to observe precipitation systems. Then, the focus is on global cloud observations from the ClaudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), including a perspective on the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) satellite. It also addresses global atmospheric water vapor profiling for clear and cloudy conditions using microwave observations. The final part of this volume provides a perspective into advances in cloud modeling using remote sensing observations.
This volume is the outcome of contributions from 51 scientists who were invited to expose their latest findings on precipitation research and in particular, on the measurement, estimation and prediction of precipitation. The reader is presented with a blend of theoretical, mathematical and technical treatise of precipitation science but also with authentic applications, ranging from local field experiments and country-scale campaigns to multinational space endeavors.