The Glencoe Math Student Edition is an interactive text that engages students and assist with learning and organization. It personalizes the learning experience for every student. The write-in text, 3-hole punched, perfed pages allow students to organize while they are learning.
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Banish math anxiety and give students of all ages a clear roadmap to success Mathematical Mindsets provides practical strategies and activities to help teachers and parents show all children, even those who are convinced that they are bad at math, that they can enjoy and succeed in math. Jo Boaler—Stanford researcher, professor of math education, and expert on math learning—has studied why students don't like math and often fail in math classes. She's followed thousands of students through middle and high schools to study how they learn and to find the most effective ways to unleash the math potential in all students. There is a clear gap between what research has shown to work in teaching math and what happens in schools and at home. This book bridges that gap by turning research findings into practical activities and advice. Boaler translates Carol Dweck's concept of 'mindset' into math teaching and parenting strategies, showing how students can go from self-doubt to strong self-confidence, which is so important to math learning. Boaler reveals the steps that must be taken by schools and parents to improve math education for all. Mathematical Mindsets: Explains how the brain processes mathematics learning Reveals how to turn mistakes and struggles into valuable learning experiences Provides examples of rich mathematical activities to replace rote learning Explains ways to give students a positive math mindset Gives examples of how assessment and grading policies need to change to support real understanding Scores of students hate and fear math, so they end up leaving school without an understanding of basic mathematical concepts. Their evasion and departure hinders math-related pathways and STEM career opportunities. Research has shown very clear methods to change this phenomena, but the information has been confined to research journals—until now. Mathematical Mindsets provides a proven, practical roadmap to mathematics success for any student at any age.
Everyday Mathematics is a comprehensive Pre-K through Grade 6 mathematics program engineered for the Common Core State Standards. Developed by The University of Chicago, School Mathematics Project, the Everyday Mathematics spiral curriculum continually reinforces abstract math concepts through concrete real-world applications. -- Provided by publisher.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Build students’ confidence and competence with tutoring strategies that spark meaningful, accelerated learning. Tutoring is much more than telling students information. Effective tutoring begins with the strong and caring relationship a tutor establishes with a learner to build trust, fuel motivation, and drive critical learning. How Tutoring Works distills the complexity of strategic moves effective tutors make to build students’ confidence and competence. Harnessing decades of Visible Learning® research, this easy to read, eye-opening guide details the six essential components of any effective tutoring intervention—establishing a relationship and credibility, addressing student confidence and challenges, setting shared goals, helping a student learn how to learn, teaching and learning content, and establishing a habit of deliberate practice. Indispensable for any educator who intervenes with students, this rich resource includes: Examples of impactful tutoring conversations, including what to say and what not to say when building a relationship with a learner. Specific approaches to use when establishing credibility, addressing challenges to learning, leveraging the relevance of knowledge, setting goals, and ensuring practice. Learning strategies, with effect size, for teaching and learning content, including specific strategies for improving reading, writing, and mathematics. Tips and tools for helping students develop powerful cognitive, metacognitive, and affective study skills. Resources and advice for establishing an effective and transformational tutoring program. Done well, tutoring can repair a student’s damaged relationship to learning, address unrealized potential, and alter the course of a young person’s life. A strong and nurturing relationship between tutor and learner is key.
Build solid mathematical understanding and develop meaningful conceptual connections. The inquiry-based approach holistically integrates the MYP key concepts, helping you shift to a concept-based approach and cement comprehension of mathematical principles. Fully comprehensive and matched to the Revised MYP, this resource builds student potential at MYP and lays foundations for cross-curricular understanding. Using a unique question cycle to sequentially build skills and comprehension, units introduce factual questions, followed by concept-based questions and conclude with debatable questions. This firm grounding in inquiry-based learning equips learners to actively explore mathematical concepts and relate them to the wider 21st Century world, strengthening comprehension. Progress your learners into IB Diploma - fully comprehensive and matched to the Revised MYP Develop conceptual understanding in the best way for your learners learn by mathematical unit or by key concept Drive active, critical exp
Are current testing practices consistent with the goals of the reform movement in school mathematics? If not, what are the alternatives? How can authentic performance in mathematics be assessed? These and similar questions about tests and their uses have forced those advocating change to examine the way in which mathematical performance data is gathered and used in American schools. This book provides recent views on the issues surrounding mathematics tests, such as the need for valid performance data, the implications of the Curriculum and Evaluation Standards for School Mathematics for test development, the identification of valid items and tests in terms of the Standards, the procedures now being used to construct a sample of state assessment tests, gender differences in test taking, and methods of reporting student achievement.