Image Processing and Acquisition using Python

Image Processing and Acquisition using Python

Author: Ravishankar Chityala

Publisher: CRC Press

Published: 2014-02-19

Total Pages: 392

ISBN-13: 1466583754

DOWNLOAD EBOOK

Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing—one of the first books to integrate these topics together. By improving readers’ knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The last part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry.


Hands-On Image Processing with Python

Hands-On Image Processing with Python

Author: Sandipan Dey

Publisher: Packt Publishing Ltd

Published: 2018-11-30

Total Pages: 483

ISBN-13: 178934185X

DOWNLOAD EBOOK

Explore the mathematical computations and algorithms for image processing using popular Python tools and frameworks. Key FeaturesPractical coverage of every image processing task with popular Python librariesIncludes topics such as pseudo-coloring, noise smoothing, computing image descriptorsCovers popular machine learning and deep learning techniques for complex image processing tasksBook Description Image processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python. The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end deep learning model called YOLO for object detection. We will also cover a few advanced problems, such as image inpainting, gradient blending, variational denoising, seam carving, quilting, and morphing. By the end of this book, we will have learned to implement various algorithms for efficient image processing. What you will learnPerform basic data pre-processing tasks such as image denoising and spatial filtering in PythonImplement Fast Fourier Transform (FFT) and Frequency domain filters (e.g., Weiner) in PythonDo morphological image processing and segment images with different algorithmsLearn techniques to extract features from images and match imagesWrite Python code to implement supervised / unsupervised machine learning algorithms for image processingUse deep learning models for image classification, segmentation, object detection and style transferWho this book is for This book is for Computer Vision Engineers, and machine learning developers who are good with Python programming and want to explore details and complexities of image processing. No prior knowledge of the image processing techniques is expected.


Image Processing and Acquisition using Python

Image Processing and Acquisition using Python

Author: Ravishankar Chityala

Publisher: CRC Press

Published: 2020-06-11

Total Pages: 340

ISBN-13: 0429516525

DOWNLOAD EBOOK

Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing—one of the first books to integrate these topics together. By improving readers’ knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The second part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry. Features Covers both the physical methods of obtaining images and the analytical processing methods required to understand the science behind the images. Contains many examples, detailed derivations, and working Python examples of the techniques. Offers practical tips on image acquisition and processing. Includes numerous exercises to test the reader’s skills in Python programming and image processing, with solutions to selected problems, example programs, and images available on the book’s web page. New to this edition Machine learning has become an indispensable part of image processing and computer vision, so in this new edition two new chapters are included: one on neural networks and the other on convolutional neural networks. A new chapter on affine transform and many new algorithms. Updated Python code aligned to the latest version of modules.


Practical Machine Learning and Image Processing

Practical Machine Learning and Image Processing

Author: Himanshu Singh

Publisher: Apress

Published: 2019-02-26

Total Pages: 177

ISBN-13: 1484241495

DOWNLOAD EBOOK

Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will LearnDiscover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.


Python Image Processing Cookbook

Python Image Processing Cookbook

Author: Sandipan Dey

Publisher:

Published: 2020-04-17

Total Pages: 438

ISBN-13: 9781789537147

DOWNLOAD EBOOK

Advancements in wireless devices and mobile technology have enabled the acquisition of a tremendous amount of graphics, pictures, and videos. Through cutting edge recipes, this book provides coverage on tools, algorithms, and analysis for image processing. This book provides solutions addressing the challenges and complex tasks of image processing.


Image Acquisition and Processing with LabVIEW

Image Acquisition and Processing with LabVIEW

Author: Christopher G. Relf

Publisher: CRC Press

Published: 2003-07-28

Total Pages: 264

ISBN-13: 0203487303

DOWNLOAD EBOOK

Image Acquisition and Processing With LabVIEWä combines the general theory of image acquisition and processing, the underpinnings of LabVIEW and the NI Vision toolkit, examples of their applications, and real-world case studies in a clear, systematic, and richly illustrated presentation. Designed for LabVIEW programmers, it fills a significant gap in the technical literature by providing a general training manual for those new to National Instruments (NI) Vision application development and a reference for more experienced vision programmers. The downloadable resources contain libraries of the example images and code referenced in the text, additional technical white papers, a demonstration version of LabVIEW 6.0, and an NI IMAQ demonstration that guides you through its features. System Requirements: Using the code provided on the downloadable resources requires LabVIEW 6.1 or higher and LabVIEW Vision Toolkit 6.1 or higher. Some of the examples also require IMAQ Vision Builder 6.1 or higher, the IMAQ OCR toolkit, and IMAQ 1394 drivers.


Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB

Author: Oge Marques

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 704

ISBN-13: 111809347X

DOWNLOAD EBOOK

UP-TO-DATE, TECHNICALLY ACCURATE COVERAGE OF ESSENTIAL TOPICS IN IMAGE AND VIDEO PROCESSING This is the first book to combine image and video processing with a practical MATLAB®-oriented approach in order to demonstrate the most important image and video techniques and algorithms. Utilizing minimal math, the contents are presented in a clear, objective manner, emphasizing and encouraging experimentation. The book has been organized into two parts. Part I: Image Processing begins with an overview of the field, then introduces the fundamental concepts, notation, and terminology associated with image representation and basic image processing operations. Next, it discusses MATLAB® and its Image Processing Toolbox with the start of a series of chapters with hands-on activities and step-by-step tutorials. These chapters cover image acquisition and digitization; arithmetic, logic, and geometric operations; point-based, histogram-based, and neighborhood-based image enhancement techniques; the Fourier Transform and relevant frequency-domain image filtering techniques; image restoration; mathematical morphology; edge detection techniques; image segmentation; image compression and coding; and feature extraction and representation. Part II: Video Processing presents the main concepts and terminology associated with analog video signals and systems, as well as digital video formats and standards. It then describes the technically involved problem of standards conversion, discusses motion estimation and compensation techniques, shows how video sequences can be filtered, and concludes with an example of a solution to object detection and tracking in video sequences using MATLAB®. Extra features of this book include: More than 30 MATLAB® tutorials, which consist of step-by-step guides toexploring image and video processing techniques using MATLAB® Chapters supported by figures, examples, illustrative problems, and exercises Useful websites and an extensive list of bibliographical references This accessible text is ideal for upper-level undergraduate and graduate students in digital image and video processing courses, as well as for engineers, researchers, software developers, practitioners, and anyone who wishes to learn about these increasingly popular topics on their own.


OpenCV 3 Computer Vision with Python Cookbook

OpenCV 3 Computer Vision with Python Cookbook

Author: Aleksei Spizhevoi

Publisher: Packt Publishing Ltd

Published: 2018-03-23

Total Pages: 296

ISBN-13: 1788478754

DOWNLOAD EBOOK

OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...


Spatio-Temporal Image Processing

Spatio-Temporal Image Processing

Author: Bernd Jähne

Publisher: Springer Science & Business Media

Published: 1993-11-10

Total Pages: 228

ISBN-13: 9783540574187

DOWNLOAD EBOOK

Image sequence processing is becoming a tremendous tool to analyze spatio-temporal data in all areas of natural science. It is the key to studythe dynamics of of complex scientific phenomena. Methods from computer science and the field of application are merged establishing new interdisciplinary research areas. This monograph emerged from scientific applications and thus is an example for such an interdisciplinaryapproach. It is addressed both to computer scientists and to researchers from other fields who are applying methods of computer vision. The results presented are mostly from environmental physics (oceanography) but they will be illuminating and helpful for researchers applying similar methods in other areas.


Image Operators

Image Operators

Author: Jason M. Kinser

Publisher: CRC Press

Published: 2018-10-10

Total Pages: 469

ISBN-13: 0429835930

DOWNLOAD EBOOK

For decades, researchers have been developing algorithms to manipulate and analyze images. From this, a common set of image tools now appear in many high-level programming languages. Consequently, the amount of coding required by a user has significantly lessened over the years. While the libraries for image analysis are coalescing to a common toolkit, the language of image analysis has remained stagnant. Often, textual descriptions of an analytical protocol consume far more real estate than does the computer code required to execute the processes. Furthermore, the textual explanations are sometimes vague or incomplete. This book offers a precise mathematical language for the field of image processing. Defined operators correspond directly to standard library routines, greatly facilitating the translation between mathematical descriptions and computer script. This text is presented with Python 3 examples. This text will provide a unified language for image processing Provides the theoretical foundations with accompanied Python® scripts to precisely describe steps in image processing applications Linkage between scripts and theory through operators will be presented All chapters will contain theories, operator equivalents, examples, Python® codes, and exercises