The Designer’s Guide to Verilog-AMS

The Designer’s Guide to Verilog-AMS

Author: Ken Kundert

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 281

ISBN-13: 140208045X

DOWNLOAD EBOOK

The Verilog Hardware Description Language (Verilog-HDL) has long been the most popular language for describing complex digital hardware. It started life as a prop- etary language but was donated by Cadence Design Systems to the design community to serve as the basis of an open standard. That standard was formalized in 1995 by the IEEE in standard 1364-1995. About that same time a group named Analog Verilog International formed with the intent of proposing extensions to Verilog to support analog and mixed-signal simulation. The first fruits of the labor of that group became available in 1996 when the language definition of Verilog-A was released. Verilog-A was not intended to work directly with Verilog-HDL. Rather it was a language with Similar syntax and related semantics that was intended to model analog systems and be compatible with SPICE-class circuit simulation engines. The first implementation of Verilog-A soon followed: a version from Cadence that ran on their Spectre circuit simulator. As more implementations of Verilog-A became available, the group defining the a- log and mixed-signal extensions to Verilog continued their work, releasing the defi- tion of Verilog-AMS in 2000. Verilog-AMS combines both Verilog-HDL and Verilog-A, and adds additional mixed-signal constructs, providing a hardware description language suitable for analog, digital, and mixed-signal systems. Again, Cadence was first to release an implementation of this new language, in a product named AMS Designer that combines their Verilog and Spectre simulation engines.


Digital Signal Processing with Field Programmable Gate Arrays

Digital Signal Processing with Field Programmable Gate Arrays

Author: Uwe Meyer-Baese

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 535

ISBN-13: 3662067285

DOWNLOAD EBOOK

Starts with an overview of today's FPGA technology, devices, and tools for designing state-of-the-art DSP systems. A case study in the first chapter is the basis for more than 30 design examples throughout. The following chapters deal with computer arithmetic concepts, theory and the implementation of FIR and IIR filters, multirate digital signal processing systems, DFT and FFT algorithms, and advanced algorithms with high future potential. Each chapter contains exercises. The VERILOG source code and a glossary are given in the appendices, while the accompanying CD-ROM contains the examples in VHDL and Verilog code as well as the newest Altera "Baseline" software. This edition has a new chapter on adaptive filters, new sections on division and floating point arithmetics, an up-date to the current Altera software, and some new exercises.


The Verilog® Hardware Description Language

The Verilog® Hardware Description Language

Author: Donald Thomas

Publisher: Springer Science & Business Media

Published: 2008-09-11

Total Pages: 395

ISBN-13: 0387853448

DOWNLOAD EBOOK

XV From the Old to the New xvii Acknowledgments xx| Verilog A Tutorial Introduction Getting Started 2 A Structural Description 2 Simulating the binaryToESeg Driver 4 Creating Ports For the Module 7 Creating a Testbench For a Module 8 Behavioral Modeling of Combinational Circuits 11 Procedural Models 12 Rules for Synthesizing Combinational Circuits 13 Procedural Modeling of Clocked Sequential Circuits 14 Modeling Finite State Machines 15 Rules for Synthesizing Sequential Systems 18 Non-Blocking Assignment ("


Embedded System Design

Embedded System Design

Author: Peter Marwedel

Publisher: Springer Science & Business Media

Published: 2010-11-16

Total Pages: 400

ISBN-13: 9400702574

DOWNLOAD EBOOK

Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.


Introduction to VLSI Design Flow

Introduction to VLSI Design Flow

Author: Sneh Saurabh

Publisher: Cambridge University Press

Published: 2023-06-15

Total Pages: 715

ISBN-13: 100920081X

DOWNLOAD EBOOK

A textbook on the fundamentals of VLSI design flow, covering the various stages of design implementation, verification, and testing.


Testing of Communicating Systems

Testing of Communicating Systems

Author: Myungchul Kim

Publisher: Springer

Published: 2013-03-19

Total Pages: 451

ISBN-13: 0387351981

DOWNLOAD EBOOK

The aim of this book is to bring together the research of academics and practitioners in the field of communication systems testing. It covers four major topic areas; types of testing including conformance testing, inoperability testing, performance and QoS testing; phases of testing including test case generation, means of testing, test execution and test results analysis; classes of systems tested and the theory and practice of testing including test-related algorithms, practical testing methodology and practical testing experience.


Mobile 3D Graphics SoC

Mobile 3D Graphics SoC

Author: Hoi-Jun Yoo

Publisher: John Wiley & Sons

Published: 2010-04-27

Total Pages: 352

ISBN-13: 9780470823781

DOWNLOAD EBOOK

The first book to explain the principals behind mobile 3D hardware implementation, helping readers understand advanced algorithms, produce low-cost, low-power SoCs, or become familiar with embedded systems As mobile broadcasting and entertainment applications evolve, there is increasing interest in 3D graphics within the field of mobile electronics, particularly for handheld devices. In Mobile 3D Graphics SoC, Yoo provides a comprehensive understanding of the algorithms of mobile 3D graphics and their real chip implementation methods. 3D graphics SoC (System on a Chip) architecture and its interaction with embedded system software are explained with numerous examples. Yoo divides the book into three sections: general methodology of low power SoC, design of low power 3D graphics SoC, and silicon implementation of 3D graphics SoCs and their application to mobile electronics. Full examples are presented at various levels such as system level design and circuit level optimization along with design technology. Yoo incorporates many real chip examples, including many commercial 3D graphics chips, and provides cross-comparisons of various architectures and their performance. Furthermore, while advanced 3D graphics techniques are well understood and supported by industry standards, this is less true in the emerging mobile applications and games market. This book redresses this imbalance, providing an in-depth look at the new OpenGL ES (The Standard for Embedded Accelerated 3D Graphics), and shows what these new embedded systems graphics libraries can provide for 3D graphics and games developers.


Advances in Hardware Design and Verification

Advances in Hardware Design and Verification

Author: Hon Li

Publisher: Springer

Published: 2016-01-09

Total Pages: 311

ISBN-13: 0387351906

DOWNLOAD EBOOK

CHARM '97 is the ninth in a series of working conferences devoted to the development and use of formal techniques in digital hardware design and verification. This series is held in collaboration with IFIP WG 10.5. Previous meetings were held in Europe every other year.


Model-Based Testing for Embedded Systems

Model-Based Testing for Embedded Systems

Author: Justyna Zander

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 668

ISBN-13: 1439818479

DOWNLOAD EBOOK

What the experts have to say about Model-Based Testing for Embedded Systems: "This book is exactly what is needed at the exact right time in this fast-growing area. From its beginnings over 10 years ago of deriving tests from UML statecharts, model-based testing has matured into a topic with both breadth and depth. Testing embedded systems is a natural application of MBT, and this book hits the nail exactly on the head. Numerous topics are presented clearly, thoroughly, and concisely in this cutting-edge book. The authors are world-class leading experts in this area and teach us well-used and validated techniques, along with new ideas for solving hard problems. "It is rare that a book can take recent research advances and present them in a form ready for practical use, but this book accomplishes that and more. I am anxious to recommend this in my consulting and to teach a new class to my students." —Dr. Jeff Offutt, professor of software engineering, George Mason University, Fairfax, Virginia, USA "This handbook is the best resource I am aware of on the automated testing of embedded systems. It is thorough, comprehensive, and authoritative. It covers all important technical and scientific aspects but also provides highly interesting insights into the state of practice of model-based testing for embedded systems." —Dr. Lionel C. Briand, IEEE Fellow, Simula Research Laboratory, Lysaker, Norway, and professor at the University of Oslo, Norway "As model-based testing is entering the mainstream, such a comprehensive and intelligible book is a must-read for anyone looking for more information about improved testing methods for embedded systems. Illustrated with numerous aspects of these techniques from many contributors, it gives a clear picture of what the state of the art is today." —Dr. Bruno Legeard, CTO of Smartesting, professor of Software Engineering at the University of Franche-Comté, Besançon, France, and co-author of Practical Model-Based Testing