Identification and Correlation of Disinfection Byproducts and Total Organic Halogen Precursors in a Biofilm Matrix

Identification and Correlation of Disinfection Byproducts and Total Organic Halogen Precursors in a Biofilm Matrix

Author: Mohd Yahya Khan

Publisher:

Published: 2014

Total Pages: 91

ISBN-13:

DOWNLOAD EBOOK

Disinfection by-products (DBP) formation in drinking water systems is a persistent issue for water utilities. Although DBP formation is complex due to the multitude of chemical and biological interactions that occur, unremoved natural organic matter (NOM) entering the water distribution system is generally regarded as the primary precursor for DBP formation. In addition, NOM also provides nutrients that support microbial growth and persistent biofilm formation. Biofilm formation is widespread within the water distribution system due to the continuous influx of unremoved NOM. Biofilm and its associated extracellular polymeric substances (EPS) provide a dynamic repository for organic matter accumulation, and can act as a DBP precursor. Trihalomethanes (THMs) and Haloacetic acids (HAAs) represent the major classes of regulated DBPs, yet there are several others that form due to the complex interaction between the organic matter and the disinfectants. The unknown total organic halogens (UTOX) is believed to contain toxicologically vital compounds. Until recently, there have been no reliable studies analyzing the relative contributions of biofilm and its associated DBP precursors to DBP formation and speciation, and how these different precursors contribute to the total organic halogen (TOX) formation. This work seeks to abridge this knowledge gap by analyzing the DBP formation from chlorination of biofilms in simulated water distribution systems. The results of this study provide critical information about potential contributions of biofilms to the formation of DBPs and UTOX in the distribution systems and can help water utilities better control the levels of both regulated and unregulated DBPs while at the same time reducing health risks associated with DBPs. To help elucidate this interaction, heterotrophic plate counting (HPC) of bacterial colonies in different pipe materials under different chlorine residuals were conducted. Additionally, DBP and TOX formation tests were conducted and correlated with parallel factor analysis (PARAFAC) of fluorescent dissolved organic carbons. The obtained results suggest that depending on the pipe material, the accumulation of organic matter in biofilm matrix contributes significantly towards DBP formation. Corrosion of iron pipes provides not only more opportunity for growth of biofilm, but also increased adsorption sites for humic substances, both of which lead to increased DBP and UTOX formation. Overall, strong evidence of biofilm contribution to DBP formation in drinking water distribution systems suggests that water utilities need to carefully consider biofilm eradication methods to minimize the subsequent formation of toxic compounds.


Analysis and Formation of Disinfection Byproducts in Drinking Water

Analysis and Formation of Disinfection Byproducts in Drinking Water

Author:

Publisher: Elsevier

Published: 2021-04-01

Total Pages: 180

ISBN-13: 0444643443

DOWNLOAD EBOOK

Drinking water disinfection has markedly reduced diseases causes by waterborne pathogenic microorganisms. However, an unintended consequence of disinfection and/or oxidation processes is the generation of disinfection byproducts (DBPs) which are formed from the reactions of disinfectants/oxidants with water matrix components. This volume of the Comprehensive Analytical Chemistry Handbook presents recent advances about the formation, identification, and quantification of inorganic and organic DBPs during oxidative processes. The book begins with a first chapter reviewing the most recent non-targeted screening approaches and workflows to characterize DBPs using low-, high-, and ultra-high-resolution mass spectrometry. The second chapter discusses the analysis of inorganic chloramines in waters using on-site and/or in-lab analytical methods. The third chapter provides an overview of the current knowledge about the mechanisms of chlorine dioxide reactions and byproducts formation. The fourth chapter presents some fundamental and practical aspects about ozonation processes in water treatment and provides an overview about ozone reaction mechanisms and byproducts formation. The fifth chapter focuses on the reactivity of halide ions, particularly bromide and iodide, with common oxidants and the role they play in determining the speciation of DBPs in treated waters. The chapter also presents strategies to mitigate the formation of DBPs during oxidation processes. Finally, the last chapter tackles the topic of DBPs formation during potable water reuse. It discusses the formation of DBPs of major concern in both memebrane-based and non-membrane-based potable water reuse treatment schemes. Researchers, water treatment specialists, and regulators will find in this book a valuable and compact resource on several key topics regarding the formation, identification, quantification, and mitigation of DBPs. Identification and quantification of known and unknown DBPs Formation of DBPs during different disinfection/oxidation processes DBPs of concern in new technologies and/or new applications of existing technologies in water treatment


Natural Organic Matter and Disinfection By-products Characterization and Control in Drinking Water

Natural Organic Matter and Disinfection By-products Characterization and Control in Drinking Water

Author: Sylvia E. Barrett

Publisher:

Published: 2000

Total Pages: 448

ISBN-13:

DOWNLOAD EBOOK

There are many by-products of water disinfection that are still not fully understood and can be potentially harmful. In this volume all the current research in this area is discussed, along with an examination of the role of NOM (natural organic matter) and its relationship to DBP (disinfection by-product) formation and control in drinking water. Understanding the relationship of NOM to DBP may well lead to new techniques for analyzing and treating water and enable reasonable choices to be made for source-water protection, treatment plant process optimization, and distribution system operation to control DBP's. This volume emphasizes the characterization and reactivity of polar natural organic matter. It examines analytical methods which better characterize NOM and determines some of the polar and nonvolatile DBP forms. It presents innovative new methods, sich as capillary electrophoresis for haloacetic aceids and LC/MS for the identification of polar dinking water DBPs.


Characterization of Natural Organic Matter in Drinking Water

Characterization of Natural Organic Matter in Drinking Water

Author: Jean-Phillipe Croue

Publisher: American Water Works Association

Published: 2000

Total Pages: 372

ISBN-13: 1583210156

DOWNLOAD EBOOK

The research reported on here sought to characterize natural organic matter (NOM) in dilute solutions and to isolate it without altering its properties, so that the effect of NOM in drinking water may be considered. Several NOM isolation methods were evaluated, including evaporation, reverse osmosis, nanofiltration, and adsorption. The effects of such isolation procedures on NOM's chemical composition and reactivity were considered. Based on these studies, the report presents conclusions regarding the feasibility and adequacy of in situ and ex situ techniques. Croue is affiliated with Laboratoire de Chimie de l'Eau de l'Environment, Universite de Poiters. Annotation copyrighted by Book News, Inc., Portland, OR.


Chemistry of Ozone in Water and Wastewater Treatment

Chemistry of Ozone in Water and Wastewater Treatment

Author: Clemens von Sonntag

Publisher: IWA Publishing

Published: 2012-08-31

Total Pages: 306

ISBN-13: 1843393131

DOWNLOAD EBOOK

Even though ozone has been applied for a long time for disinfection and oxidation in water treatment, there is lack of critical information related to transformation of organic compounds. This has become more important in recent years, because there is considerable concern about the formation of potentially harmful degradation products as well as oxidation products from the reaction with the matrix components. In recent years, a wealth of information on the products that are formed has accumulated, and substantial progress in understanding mechanistic details of ozone reactions in aqueous solution has been made. Based on the latter, this may allow us to predict the products of as yet not studied systems and assist in evaluating toxic potentials in case certain classes are known to show such effects. Keeping this in mind, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications discusses mechanistic details of ozone reactions as much as they are known to date and applies them to the large body of studies on micropollutant degradation (such as pharmaceuticals and endocrine disruptors) that is already available. Extensively quoting the literature and updating the available compilation of ozone rate constants gives the reader a text at hand on which his research can be based. Moreover, those that are responsible for planning or operation of ozonation steps in drinking water and wastewater treatment plants will find salient information in a compact form that otherwise is quite disperse. A critical compilation of rate constants for the various classes of compounds is given in each chapter, including all the recent publications. This is a very useful source of information for researchers and practitioners who need kinetic information on emerging contaminants. Furthermore, each chapter contains a large selection of examples of reaction mechanisms for the transformation of micropollutants such as pharmaceuticals, pesticides, fuel additives, solvents, taste and odor compounds, cyanotoxins. Authors: Prof. Dr. Clemens von Sonntag, Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, and Instrumentelle Analytische Chemie, Universität Duisburg-Essen, Essen, Germany and Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, and Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland.


Organic Pollutants in the Water Cycle

Organic Pollutants in the Water Cycle

Author: Thorsten Reemtsma

Publisher: John Wiley & Sons

Published: 2006-12-13

Total Pages: 368

ISBN-13: 352760863X

DOWNLOAD EBOOK

This first in-depth and comprehensive reference on the most pertinent polar contaminant classes and their behavior in the whole water cycle includes, among others, industrial chemicals, consumer products, polar herbicides and pharmaceuticals. All chapters are uniformly structured, covering properties, pollution sources, occurrence in wastewater, surface water, and groundwater as well as water treatment aspects, while ecotoxicological and assessment aspects are also covered. Among the authors are leading experts in their relevant fields, many of whom provide here groundbreaking research results. The result is an up-to-date information source for researchers and professionals working in water quality monitoring, water supply, or wastewater treatment, as well as environmental and water chemists, geochemists, ecologists, chemists and engineers.


Microbial Extracellular Polymeric Substances

Microbial Extracellular Polymeric Substances

Author: Jost Wingender

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 266

ISBN-13: 3642601472

DOWNLOAD EBOOK

Microbial extracellular polymeric substances (EPS) are the key components for the aggregation of microorganisms in biofilms, flocs and sludge. They are composed of polysaccharides, proteins, nucleic acids, lipids and other biological macromolecules. EPS provide a highly hydrated gel matrix in which microbial cells can establish stable synergistic consortia. Cohesion and adhesion as well as morphology, structure, biological function and other properties such as mechanical stability, diffusion, sorption and optical properties of microbial aggregates are determined by the EPS matrix. Also, the protection of biofilm organisms against biocides is attributed to the EPS. Their matrix allows phase separation in biofiltration and is also important for the degradation of particulate material which is of great importance for the self purification processes in surface waters and for waste water treatment.


Long-Term Effects of Disinfection Changes on Water Quality

Long-Term Effects of Disinfection Changes on Water Quality

Author: John E. Dyksen

Publisher: American Water Works Association

Published: 2007

Total Pages: 316

ISBN-13: 1583215352

DOWNLOAD EBOOK

In response to many U.S. water utilities that are considering changing disinfectants from chlorine to alternative disinfectants, this research has been undertaken to gain knowledge of long-term effects.


Advanced Oxidation Processes for Water and Wastewater Treatment

Advanced Oxidation Processes for Water and Wastewater Treatment

Author: Simon Parsons

Publisher: IWA Publishing

Published: 2004-03-01

Total Pages: 370

ISBN-13: 1843390175

DOWNLOAD EBOOK

The suitability of Advanced Oxidation Processes (AOPs) for pollutant degradation was recognised in the early 1970s and much research and development work has been undertaken to commercialise some of these processes. AOPs have shown great potential in treating pollutants at both low and high concentrations and have found applications as diverse as ground water treatment, municipal wastewater sludge destruction and VOCs control. Advanced Oxidation Processes for Water and Wastewater Treatment is an overview of the advanced oxidation processes currently used or proposed for the remediation of water, wastewater, odours and sludge. The book contains two opening chapters which present introductions to advanced oxidation processes and a background to UV photolysis, seven chapters focusing on individual advanced oxidation processes and, finally, three chapters concentrating on selected applications of advanced oxidation processes. Advanced Oxidation Processes for Water and Wastewater Treatment will be invaluable to readers interested in water and wastewater treatment processes, including professionals and suppliers, as well as students and academics studying in this area. Dr Simon Parsons is a Senior Lecturer in Water Sciences at Cranfield University with ten years' experience of industrial and academic research and development.