Higher Engineering Mathematics

Higher Engineering Mathematics

Author: John Bird

Publisher: Routledge

Published: 2017-04-07

Total Pages: 1725

ISBN-13: 1351965808

DOWNLOAD EBOOK

Now in its eighth edition, Higher Engineering Mathematics has helped thousands of students succeed in their exams. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced engineering mathematics that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper-level vocational courses and for undergraduate degree courses. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 2,000 further questions contained in the 277 practice exercises.


Higher Mathematics for Physics and Engineering

Higher Mathematics for Physics and Engineering

Author: Hiroyuki Shima

Publisher: Springer Science & Business Media

Published: 2010-04-12

Total Pages: 693

ISBN-13: 3540878645

DOWNLOAD EBOOK

Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.


Higher Mathematics for Engineering and Technology

Higher Mathematics for Engineering and Technology

Author: Mahir M. Sabzaliev

Publisher: CRC Press

Published: 2018-05-03

Total Pages: 239

ISBN-13: 1351397109

DOWNLOAD EBOOK

Based on and enriched by the long-term teaching experience of the authors, this volume covers the major themes of mathematics in engineering and technical specialties. The book addresses the elements of linear algebra and analytic geometry, differential calculus of a function of one variable, and elements of higher algebra. On each theme the authors first present short theoretical overviews and then go on to give problems to be solved. The authors provide the solutions to some typical, relatively difficult problems and guidelines for solving them. The authors consider the development of the self-dependent thinking ability of students in the construction of problems and indicate which problems are relatively difficult. The book is geared so that some of the problems presented can be solved in class, and others are meant to be solved independently. An extensive, explanatory solution of at least one typical problem is included, with emphasis on applications, formulas, and rules. This volume is primarily addressed to advanced students of engineering and technical specialties as well as to engineers/technicians and instructors of mathematics. Key features: Presents the theoretical background necessary for solving problems, including definitions, rules, formulas, and theorems on the particular theme Provides an extended solution of at least one problem on every theme and guidelines for solving some difficult problems Selects problems for independent study as well as those for classroom time, taking into account the similarity of both sets of problems Differentiates relatively difficult problems from others for those who want to study mathematics more deeply Provides answers to the problems within the text rather than at the back of the book, enabling more direct verification of problem solutions Presents a selection of problems and solutions that are very interesting not only for the students but also for professor-teacher staff


Higher Engineering Mathematics, 7th Ed

Higher Engineering Mathematics, 7th Ed

Author: John Bird

Publisher: Routledge

Published: 2017-06-30

Total Pages: 896

ISBN-13: 9781138429062

DOWNLOAD EBOOK

A practical introduction to the core mathematics principles required at higher engineering level John Bird�s approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in its seventh edition, Engineering Mathematics has helped thousands of students to succeed in their exams. The new edition includes a section at the start of each chapter to explain why the content is important and how it relates to real life. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 1900 further questions contained in the 269 practice exercises.


Advanced Engineering Mathematics

Advanced Engineering Mathematics

Author: Michael Greenberg

Publisher:

Published: 2013-09-20

Total Pages: 1344

ISBN-13: 9781292042541

DOWNLOAD EBOOK

Appropriate for one- or two-semester Advanced Engineering Mathematics courses in departments of Mathematics and Engineering. This clear, pedagogically rich book develops a strong understanding of the mathematical principles and practices that today's engineers and scientists need to know. Equally effective as either a textbook or reference manual, it approaches mathematical concepts from a practical-use perspective making physical applications more vivid and substantial. Its comprehensive instructional framework supports a conversational, down-to-earth narrative style offering easy accessibility and frequent opportunities for application and reinforcement.


Engineering Mathematics-II

Engineering Mathematics-II

Author: A. Ganeshi

Publisher: New Age International

Published: 2009

Total Pages: 50

ISBN-13: 8122426867

DOWNLOAD EBOOK

About the Book: This book Engineering Mathematics-II is designed as a self-contained, comprehensive classroom text for the second semester B.E. Classes of Visveswaraiah Technological University as per the Revised new Syllabus. The topics included are Differential Calculus, Integral Calculus and Vector Integration, Differential Equations and Laplace Transforms. The book is written in a simple way and is accompanied with explanatory figures. All this make the students enjoy the subject while they learn. Inclusion of selected exercises and problems make the book educational in nature. It shou.


Engineering Mathematics

Engineering Mathematics

Author: K. A. Stroud

Publisher: Industrial Press Inc.

Published: 2001

Total Pages: 1270

ISBN-13: 9780831131524

DOWNLOAD EBOOK

A groundbreaking and comprehensive reference that's been a bestseller since 1970, this new edition provides a broad mathematical survey and covers a full range of topics from the very basic to the advanced. For the first time, a personal tutor CD-ROM is included.


Engineering Mathematics

Engineering Mathematics

Author: John Bird

Publisher: Taylor & Francis

Published: 2017-07-14

Total Pages: 727

ISBN-13: 1317202600

DOWNLOAD EBOOK

Now in its eighth edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams. John Bird's approach is based on worked examples and interactive problems. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure that readers can relate theory to practice. The extensive and thorough topic coverage makes this an ideal text for a range of Level 2 and 3 engineering courses. This title is supported by a companion website with resources for both students and lecturers, including lists of essential formulae and multiple choice tests.