High-Temperature Fatigue Behaviour of Austenitic Stainless Steel
Author: Hugo Wärner
Publisher: Linköping University Electronic Press
Published: 2018-12-20
Total Pages: 49
ISBN-13: 9176851745
DOWNLOAD EBOOKThe global energy consumption is increasing and together with global warming from greenhouse gas emission, create the need for more environmental friendly energy production processes. Higher efficiency of biomass power plants can be achieved by increasing temperature and pressure in the boiler section and this would increase the generation of electricity along with the reduction in emission of greenhouse gases e.g. CO2. The power generation must also be flexible to be able to follow the demands of the energy market, this results in a need for cyclic operating conditions with alternating output and multiple start-ups and shut-downs. Because of the demands of flexibility, higher temperature and higher pressure in the boiler section of future biomass power plants, the demands on improved mechanical properties of the materials of these components are also increased. Properties like creep strength, thermomechanical fatigue resistance and high temperature corrosion resistance are critical for materials used in the next generation biomass power plants. Austenitic stainless steels are known to possess such good high temperature properties and are relatively cheap compared to the nickel-base alloys, which are already operating at high temperature cyclic conditions in other applications. The behaviour of austenitic stainless steels during these widened operating conditions are not yet fully understood. The aim of this licentiate thesis is to increase the knowledge of the mechanical behaviour at high temperature cyclic conditions for austenitic stainless steels. This is done by the use of thermomechanical fatigue- and creepfatigue testing at elevated temperatures. For safety reasons, the effect of prolonged service degradation is investigated by pre-ageing before mechanical testing. Microscopy is used to investigate the microstructural development and resulting damage behaviour of the austenitic stainless steels after testing. The results show that creep-fatigue interaction damage, creep damage and oxidation assisted cracking are present at high temperature cyclic conditions. In addition, simulated service degradation resulted in a detrimental embrittling effect due to the deterioration by the microstructural evolution.