This book constitutes the refereed proceedings of the 4th International Workshop on Experimental and Efficient Algorithms, WEA 2005, held in Santorini Island, Greece in May 2005. The 47 revised full papers and 7 revised short papers presented together with extended abstracts of 3 invited talks were carefully reviewed and selected from 176 submissions. The book is devoted to the design, analysis, implementation, experimental evaluation, and engineering of efficient algorithms. Among the application areas addressed are most fields applying advanced algorithmic techniques, such as combinatorial optimization, approximation, graph theory, discrete mathematics, scheduling, searching, sorting, string matching, coding, networking, data mining, data analysis, etc.
This book constitutes the refereed proceedings of the Second International Conference on High Performance Computing and Communications, HPCC 2006. The book presents 95 revised full papers, addressing all current issues of parallel and distributed systems and high performance computing and communication. Coverage includes networking protocols, routing, and algorithms, languages and compilers for HPC, parallel and distributed architectures and algorithms, wireless, mobile and pervasive computing, Web services, peer-to-peer computing, and more.
This book constitutes the refereed proceedings of the 12th International Conference on High-Performance Computing, HiPC 2005, held in Goa, India in December 2005. The 50 revised full papers presented were carefully reviewed and selected from 362 submissions. After the keynote section and the presentation of the 2 awarded best contributions the papers are organized in topical sections on algorithms, applications, architecture, systems software, communication networks, and systems and networks.
This book constitutes the thoroughly refereed post-proceedings of the 7th International Conference on High Performance Computing for Computational Science, VECPAR 2006, held in Rio de Janeiro, Brazil, in June 2006. The 44 revised full papers presented together with one invited paper and 12 revised workshop papers cover Grid computing, cluster computing, numerical methods, large-scale simulations in Physics, and computing in Biosciences.
An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.
Peterson's Graduate Programs in Computer Science & Information Technology, Electrical & Computer Engineering, and Energy & Power Engineering contains a wealth of information on colleges and universities that offer graduate work these exciting fields. The profiled institutions include those in the United States, Canada and abroad that are accredited by U.S. accrediting bodies. Up-to-date data, collected through Peterson's Annual Survey of Graduate and Professional Institutions, provides valuable information on degree offerings, professional accreditation, jointly offered degrees, part-time and evening/weekend programs, postbaccalaureate distance degrees, faculty, students, degree requirements, entrance requirements, expenses, financial support, faculty research, and unit head and application contact information. Readers will find helpful links to in-depth descriptions that offer additional detailed information about a specific program or department, faculty members and their research, and much more. In addition, there are valuable articles on financial assistance, the graduate admissions process, advice for international and minority students, and facts about accreditation, with a current list of accrediting agencies.
Containing over 300 entries in an A-Z format, the Encyclopedia of Parallel Computing provides easy, intuitive access to relevant information for professionals and researchers seeking access to any aspect within the broad field of parallel computing. Topics for this comprehensive reference were selected, written, and peer-reviewed by an international pool of distinguished researchers in the field. The Encyclopedia is broad in scope, covering machine organization, programming languages, algorithms, and applications. Within each area, concepts, designs, and specific implementations are presented. The highly-structured essays in this work comprise synonyms, a definition and discussion of the topic, bibliographies, and links to related literature. Extensive cross-references to other entries within the Encyclopedia support efficient, user-friendly searchers for immediate access to useful information. Key concepts presented in the Encyclopedia of Parallel Computing include; laws and metrics; specific numerical and non-numerical algorithms; asynchronous algorithms; libraries of subroutines; benchmark suites; applications; sequential consistency and cache coherency; machine classes such as clusters, shared-memory multiprocessors, special-purpose machines and dataflow machines; specific machines such as Cray supercomputers, IBM’s cell processor and Intel’s multicore machines; race detection and auto parallelization; parallel programming languages, synchronization primitives, collective operations, message passing libraries, checkpointing, and operating systems. Topics covered: Speedup, Efficiency, Isoefficiency, Redundancy, Amdahls law, Computer Architecture Concepts, Parallel Machine Designs, Benmarks, Parallel Programming concepts & design, Algorithms, Parallel applications. This authoritative reference will be published in two formats: print and online. The online edition features hyperlinks to cross-references and to additional significant research. Related Subjects: supercomputing, high-performance computing, distributed computing
This book constitutes the refereed proceedings of the 17th Annual International Conference on Computing and Combinatorics, held in Dallas, TX, USA, in August 2011. The 54 revised full papers presented were carefully reviewed and selected from 136 submissions. Topics covered are algorithms and data structures; algorithmic game theory and online algorithms; automata, languages, logic, and computability; combinatorics related to algorithms and complexity; complexity theory; computational learning theory and knowledge discovery; cryptography, reliability and security, and database theory; computational biology and bioinformatics; computational algebra, geometry, and number theory; graph drawing and information visualization; graph theory, communication networks, and optimization; parallel and distributed computing.