High-Efficiency Solar Cells

High-Efficiency Solar Cells

Author: Xiaodong Wang

Publisher: Springer Science & Business Media

Published: 2013-11-01

Total Pages: 664

ISBN-13: 3319019880

DOWNLOAD EBOOK

As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers’ interest in the development of novel materials and technologies for solar energy applications.


Silicon Heterojunction Solar Cells

Silicon Heterojunction Solar Cells

Author: W.R. Fahrner

Publisher: Trans Tech Publications Ltd

Published: 2006-08-15

Total Pages: 204

ISBN-13: 3038131024

DOWNLOAD EBOOK

The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.


High Efficiency Silicon Solar Cells

High Efficiency Silicon Solar Cells

Author: Martin A. Green

Publisher: Trans Tech Publications Ltd

Published: 1987-01-01

Total Pages: 237

ISBN-13: 3035739641

DOWNLOAD EBOOK

The early chapters comprehensively review the optical and transport properties of silicon. Light trapping is described in detail. Limits on the efficiency of silicon cells are discussed as well as material requirements necessary to approach these limits. The status of current approaches to passifying surfaces, contacts and bulk regions is reviewed. The final section of the book describes the most practical approaches to the fabrication of high-efficiency cells capable of meeting the efficiency targets for both concentrated and non-concentrated sunlight, including a discussion of design and processing approaches for non-crystalline silicon.


McEvoy's Handbook of Photovoltaics

McEvoy's Handbook of Photovoltaics

Author: Soteris Kalogirou

Publisher: Academic Press

Published: 2017-08-24

Total Pages: 1341

ISBN-13: 0128103973

DOWNLOAD EBOOK

Practical Handbook of Photovoltaics, Third Edition, is a 'benchmark' publication for those involved in the design, manufacture and use of these devices. This fully revised handbook includes brand new sections on smart grids, net metering and the modeling of photovoltaic systems, as well as fully revised content on developments in photovoltaic applications, the economics of PV manufacturing and updated chapters on solar cell function, raw materials, photovoltaic standards, calibration and testing, all with new examples and case studies. The editor has assembled internationally-respected contributors from industry and academia around the world to make this a truly global reference. It is essential reading for electrical engineers, designers of systems, installers, architects, policymakers and physicists working with photovoltaics. - Presents a cast of international experts from industry and academia to ensure the highest quality information from multiple stakeholder perspectives - Covers all things photovoltaics, from the principles of solar cell function and their raw materials, to the installation and design of full photovoltaic systems - Includes case studies, practical examples, and reports on the latest advances and worldwide applications


High-Efficient Low-Cost Photovoltaics

High-Efficient Low-Cost Photovoltaics

Author: Vesselinka Petrova-Koch

Publisher: Springer Science & Business Media

Published: 2009

Total Pages: 235

ISBN-13: 3540793585

DOWNLOAD EBOOK

A bird's-eye view of the developmental trends and problems of recent photovoltaics is presented. The worldwide effort to develop high-efficiency low-cost PV modules, making use of most efficient solar cells and clever low-cost solar concentrators is described.


Atomic Layer Deposition in Energy Conversion Applications

Atomic Layer Deposition in Energy Conversion Applications

Author: Julien Bachmann

Publisher: John Wiley & Sons

Published: 2017-03-15

Total Pages: 366

ISBN-13: 3527694838

DOWNLOAD EBOOK

Combining the two topics for the first time, this book begins with an introduction to the recent challenges in energy conversion devices from a materials preparation perspective and how they can be overcome by using atomic layer deposition (ALD). By bridging these subjects it helps ALD specialists to understand the requirements within the energy conversion field, and researchers in energy conversion to become acquainted with the opportunities offered by ALD. With its main focus on applications of ALD for photovoltaics, electrochemical energy storage, and photo- and electrochemical devices, this is important reading for materials scientists, surface chemists, electrochemists, electrotechnicians, physicists, and those working in the semiconductor industry.


Next Generation Photovoltaics

Next Generation Photovoltaics

Author: A. Martí

Publisher: CRC Press

Published: 2003-09-01

Total Pages: 341

ISBN-13: 1420033867

DOWNLOAD EBOOK

Although photovoltaics are regarded by many as the most likely candidate for long term sustainable energy production, their implementation has been restricted by the high costs involved. Nevertheless, the theoretical limit on photovoltaic energy conversion efficiency-above 85%-suggests that there is room for substantial improvement of current comme


Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2021-08-24

Total Pages: 578

ISBN-13: 1119724708

DOWNLOAD EBOOK

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.


Nanostructured Solar Cells

Nanostructured Solar Cells

Author: Narottam Das

Publisher: BoD – Books on Demand

Published: 2017-02-22

Total Pages: 316

ISBN-13: 953512935X

DOWNLOAD EBOOK

Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.