Provides a one-volume overall picture of the largest of the classical divisions of organic chemistry, suitable for the graduate or advanced undergraduate student, as well as for research workers, both specialists in the field and those engaged in another discipline and requiring knowledge of heterocyclic chemistry. It represents Volume 9 of Comprehensive Heterocyclic Chemistry and utilizes the general chapters which appear in the 8-volume work. The highly systematic coverage given to the subject makes this the most authoritative one-volume account of modern heterocyclic chemistry available.
This classical textbook in the best sense of the word is now completely revised, updated and with more than 40% new content. The approved ordering system according to the ring size of the heterocycles has been retained, while the important chapter on 'Problems and their Solutions' has been almost completely renewed by introduction of up-to-date scientific exercises, resulting in a great tool for self-testing and exams. There was maintained a chapter on nomenclature and a helpful index of name reactions. With approximately 1,000 new literature citations, this book remains a brilliant gateway to modern heterocyclic science for master and graduate students, as well as PhDs and researchers entering the field. 'If you want quick information about the basic (or acidic!) properties of a heterocycle, some interesting facts, or an assorted few ways of making it, this book provides a welcoming, accurate, and concise introduction.' Angewandte Chemie IE 'Eicher and Hauptmann provide an up to date introduction to the field for the advanced undergraduate and graduate students. ... The book is carefully produced to a very high standard.' European Journal of Medicinal Chemistry
Covering the fundamentals of heterocyclic reactivity and synthesis, this book teaches the subject in a way that is understandable to graduate students. Recognizing the level at which heterocyclic chemistry is often taught, the authors have included advanced material that make it appropriate for postgraduate courses. The text discusses the chemical reactivity and synthesis of particular heterocyclic systems. Exercises and solutions help students understand and apply the principles. Original references are included throughout, as well as many review references.
This book presents key aspects of organic synthesis – stereochemistry, functional group transformations, bond formation, synthesis planning, mechanisms, and spectroscopy – and a guide to literature searching in a reader-friendly manner. • Helps students understand the skills and basics they need to move from introductory to graduate organic chemistry classes • Balances synthetic and physical organic chemistry in a way accessible to students • Features extensive end-of-chapter problems • Updates include new examples and discussion of online resources now common for literature searches • Adds sections on protecting groups and green chemistry along with a rewritten chapter surveying organic spectroscopy
This expanded second edition provides a concise overview of the main principles and reactions of heterocyclic chemistry for undergraduate students studying chemistry and related courses. Using a successful and student-friendly "at a glance" approach, this book helps the student grasp the essence of heterocyclic chemistry, ensuring that they can confidently use that knowledge when required. The chapters are thoroughly revised and updated with references to books and reviews; extra examples and student exercises with answers online; and color diagrams that emphasize exactly what is happening in the reaction chemistry depicted.
A unique approach to a core topic in organic chemistry presented by an experienced teacher to students and professionals Heterocyclic rings are present in the majority of known natural products, contributing to enormous structural diversity. In addition, they often possess significant biological activity. Medicinal chemists have embraced this last property in designing most of the small molecule drugs in use today. This book offers readers a fundamental understanding of the basics of heterocyclic chemistry and their occurrence in natural products such as amino acids, DNA, vitamins, and antibiotics. Based on class lectures that the author has developed over more than 40 years of teaching, it focuses on the chemistry of such heterocyclic substances and how they differ from carbocyclic systems. Introductory Heterocyclic Chemistry offers in-depth chapters covering naturally occurring heterocycles; properties of aromatic heterocycles; π-deficient heterocycles; π-excessive heterocycles; and ring transformations of heterocycles. It then offers an overview of 1,3-dipolar cycloadditions before finishing up with a back-to-basics section on nitriles and amidines. Presents a conversational approach to a fundamental topic in organic chemistry teaching Offers a unique look at this core organic chemistry topic via important naturally occurring and/or biologically active heterocycles Based on the author's many years of class lectures for teaching at the undergraduate and graduate level as well as pharmaceutical-industry courses Clear, concise, and accessible for advanced students of chemistry to gain a fundamental understanding of the basics of heterocyclic chemistry Introductory Heterocyclic Chemistry is an excellent text for undergraduate and graduate students as well as chemists in industrial environments in chemistry, pharmacy, medicinal chemistry, and biology.
This book is designed for those who have had no more than a brief introduction to organic chemistry and who require a broad understanding of the subject. The book is in two parts. In Part I, reaction mechanism is set in its wider context of the basic principles and concepts that underlie chemical reactions: chemical thermodynamics, structural theory, theories of reaction kinetics, mechanism itself and stereochemistry. In Part II these principles and concepts are applied to the formation of particular types of bonds, groupings, and compounds. The final chapter in Part II describes the planning and detailed execution of the multi-step syntheses of several complex, naturally occurring compounds.
Hypervalent Iodine Chemistry is the first comprehensive text covering all of the main aspects of the chemistry of organic and inorganic polyvalent iodine compounds, including applications in chemical research, medicine, and industry. Providing a comprehensive overview of the preparation, properties, and synthetic applications of this important class of reagents, the text is presented in the following way: The introductory chapter provides a historical background and describes the general classification of iodine compounds, nomenclature, hypervalent bonding, structural features, and the principles of reactivity of polyvalent iodine compounds. Chapter 2 gives a detailed description of the preparative methods and structural features of all known classes of organic and inorganic derivatives of polyvalent iodine. Chapter 3, the key chapter of the book, deals with the many applications of hypervalent iodine reagents in organic synthesis. Chapter 4 describes the most recent achievements in hypervalent iodine catalysis. Chapter 5 deals with recyclable polymer-supported and nonpolymeric hypervalent iodine reagents. Chapter 6 covers the "green" reactions of hypervalent iodine reagents under solvent-free conditions or in aqueous solutions. The final chapter provides an overview of the important practical applications of polyvalent iodine compounds in medicine and industry. This book is aimed at all chemists interested in iodine compounds, including academic and industrial researchers in inorganic, organic, physical, medicinal, and biological chemistry. It will be particularly useful to synthetic organic and inorganic chemists, including graduate and advanced undergraduate students. It comprehensively covers the green chemistry aspects of hypervalent iodine chemistry, making it especially useful for industrial chemists.