Hemicelluloses and Lignin in Biorefineries provides an understanding of lignocellulosic biomass, which is mainly composed of cellulose, hemicelluloses, and lignin. It promotes the valorization of these molecules in the context of the bioeconomy and presents hemicelluloses and lignin, which are generated in lignocellulosic biorefineries, as the molecules of the future. The viability of these molecules lies in their renewability and potential. This book covers all aspects of hemicelluloses and lignin including structure, biosynthesis, extraction, biodegradation, and conversion. The book also looks ahead to the socioeconomic and environmental value of biobased industry and emphasizes an understanding of the potential of lignocellulosic biomass.
Hemicelluloses and Lignin in Biorefineries provides an understanding of lignocellulosic biomass, which is mainly composed of cellulose, hemicelluloses, and lignin. It promotes the valorization of these molecules in the context of the bioeconomy and presents hemicelluloses and lignin, which are generated in lignocellulosic biorefineries, as the molecules of the future. The viability of these molecules lies in their renewability and potential. This book covers all aspects of hemicelluloses and lignin including structure, biosynthesis, extraction, biodegradation, and conversion. The book also looks ahead to the socioeconomic and environmental value of biobased industry and emphasizes an understanding of the potential of lignocellulosic biomass.
Biomass Fractionation Technologies for a Lignocellulosic Feedstock-based Biorefinery reviews the extensive research and tremendous scientific and technological developments that have occurred in the area of biorefinering, including industrial processes and product development using 'green technologies', often referred as white biotechnology. As there is a huge need for new design concepts for modern biorefineries as an alternative and amendment to industrial crude oil and gas refineries, this book presents the most important topics related to biomass fractionation, including advances, challenges, and perspectives, all with references to current literature for further study. Presented in 26 chapters by international field specialists, each chapter consists of review text that comprises the most recent advances, challenges, and perspectives for each fractionation technique. The book is an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation. - Provides information on the most advanced and innovative pretreatment processes and technologies for biomass - Reviews numerous valuable products from lignocellulose - Discusses integration of processes for complete biomass conversion with minimum waste generation - Identifies the research gaps in scale-up - Presents an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation
This edited book provides knowledge about hemicelluloses biorefinery approaching production life cycle, circular economy, and valorization by obtaining value-added bioproducts and bioenergy. A special focus is dedicated to chemical and biochemical compounds produced from the hemicelluloses derivatives platform. Hemicelluloses are polysaccharides located into plant cell wall, with diverse chemical structures and properties. It is the second most spread organic polymer on nature and found in vast lignocellulosic materials from agro and industrial wastes, therefore, hemicelluloses are considered as abundant and renewable raw material/feedstock. Biorefinery concept contributes to hemicelluloses production associated with biomass industrial processes. Hemicelluloses are alternative sources of sugars for renewable fuels and as platform for chemicals production. This book reviews chemical processes for sugar production and degradation, obtaining of intermediate and final products, and challenges for pentose fermentation. Aspects of hemicelluloses chain chemical and enzymatic modifications are presented with focus on physicochemical properties improvement for bioplastic and biomaterial approaches. Hemicelluloses are presented as sources for advanced materials in biomedical and pharmaceutical uses, and as hydrogel for chemical and medicine deliveries. An interdisciplinary approach is needed to cover all the processes involving hemicelluloses, its conversion into final and intermediate value-added compounds, and bioenergy production. Covering this context, this book is of interest to teachers, students, researchers, and scientists dedicated to biomass valorization. This book is a knowledge source of basic aspects to advanced processing and application for graduate students, particularly. Besides, the book serves as additional reading material for undergraduate students (from different courses) with a deep interest in biomass and waste conversion, valorization, and chemical products from hemicelluloses
This reference book describes how bioprocessing and biotechnology could enhance the value extracted from wood-based lignocellulosic fiber by employing both biochemical and thermochemical conversion processes. It documents recent accomplishments and suggests future prospects for research and development of integrated forest biorefineries (IFBR) as the path forward for the pulp, paper and other fiber-processing industries. This is the only book to cover this area of high economic, social, and environmental importance. It is aimed at industrialists and academics from diverse science and engineering backgrounds including chemical and biotechnology companies, governmental and professional bodies, and scholarly societies. The Editor and contributors are internationally recognized scientists and many are leaders in their respective fields. The book starts with an introductory overview of the current state of biorefining and a justification for future developments. The next four chapters deal with social, economic and environmental issues related to regulations, biomass production and supply, process modelling, and life cycle analysis. Subsequent chapters focus on the extraction of biochemicals from biomass and their potential utilization to add value to the IFBR prior to pulping. The book then presents, compares and evaluates two types of forest biorefineries based on kraft and organosolv pulping. Finally, the book assess the potential of waste biomass and streams, such paper mill sludge and black liquor, to serve as feedstock for biofuel production and value-added biomaterials through both the biochemical and thermochemical routes of biomass bioprocessing. The economics of the described IFBR processes and products, and their environmental impact, is a major focus in most of the chapters. Practical examples are presented where relevant and applicable.
Biomass resources and their refining are key research topics internationally as alternatives to fossil fuel resources and oil refining. This book explores the heterogeneous nature of lignocellulosic biomass, which restricts its use as a raw material, and describes the theoretical basis of the lignocellulose refinery. It puts forward the theory of the integrated biomass refinery system, which produces multiple products, including biofuels, biomaterials, biochemicals, food and feed based on careful fractionation of the raw material. Chapter 1 introduces the significance and development of lignocellulose biorefining. Chapter 2 gives the theoretical basis of lignocellulose biorefinery engineering. Chapters 3 to 6 describe in detail biomass refinery engineering from the perspectives of feedstocks, conversions, products and processes respectively. Models of integrated industrial biomass refinery chains are presented in Chapter 7. Finally, Chapter 8 considers future trends in lignocellulose biorefining. - Explores mechanisms of selective fractionation of biomass based on biomass structural characteristics and product requirements - Addresses biological, physical and chemical conversion technologies, as well as combinations of different methods based on the biomass material characteristics - This thorough exploration of lignocellulose biorefining is written by an expert from a key research institute in this field
Handbook of Biofuels looks at the many new developments in various type of bioenergy, along with the significant constraints in their production and/or applications. Beyond introducing current approaches and possible future directions of research, this title covers sources and processing of raw materials to downstream processing, constraints involved and research approaches to address and overcome these needs. Different combinations of products from the biorefinery are included, along with the material to answer questions surrounding the optimum process conditions for conversion of different feedstocks to bioenergy, the basis for choosing conversion technology, and what bioenergy products make economic sense. With chapters on the techno-economic analysis of biofuel production and concepts and step-by-step approaches in bioenergy processing, the objective of this book is to present a comprehensive and all-encompassing reference about bioenergy to students, teachers, researchers and professionals. - Reviews all existing and emerging technologies surrounding the production of advanced biofuels, including biodiesel and bioethanol - Includes biofuel applications with compatible global application case studies - Offers new pathways for converting biomass
Written with a diverse audience in mind, this book describes the current status, development, and future prospects for the critical technology of second-generation biorefineries, specifically with a focus on lignocellulosic materials as feedstock. It provides an overview of the issues behind this technological transition, and it provides, in depth,
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex