Graph Algorithms and Applications 3

Graph Algorithms and Applications 3

Author: Giuseppe Liotta

Publisher: World Scientific

Published: 2004-01-01

Total Pages: 418

ISBN-13: 9789812796608

DOWNLOAD EBOOK

This book contains Volume 6 of the Journal of Graph Algorithms and Applications (JGAA) . JGAA is a peer-reviewed scientific journal devoted to the publication of high-quality research papers on the analysis, design, implementation, and applications of graph algorithms. Areas of interest include computational biology, computational geometry, computer graphics, computer-aided design, computer and interconnection networks, constraint systems, databases, graph drawing, graph embedding and layout, knowledge representation, multimedia, software engineering, telecommunications networks, user interfaces and visualization, and VLSI circuit design. Graph Algorithms and Applications 3 presents contributions from prominent authors and includes selected papers from the Symposium on Graph Drawing (1999 and 2000). All papers in the book have extensive diagrams and offer a unique treatment of graph algorithms focusing on the important applications. Contents: Triangle-Free Planar Graphs and Segment Intersection Graphs (N de Castro et al.); Traversing Directed Eulerian Mazes (S Bhatt et al.); A Fast Multi-Scale Method for Drawing Large Graphs (D Harel & Y Koren); GRIP: Graph Drawing with Intelligent Placement (P Gajer & S G Kobourov); Graph Drawing in Motion (C Friedrich & P Eades); A 6-Regular Torus Graph Family with Applications to Cellular and Interconnection Networks (M Iridon & D W Matula); and other papers. Readership: Researchers and practitioners in theoretical computer science, computer engineering, and combinatorics and graph theory.


Graph Theory with Algorithms and its Applications

Graph Theory with Algorithms and its Applications

Author: Santanu Saha Ray

Publisher: Springer Science & Business Media

Published: 2012-11-02

Total Pages: 223

ISBN-13: 8132207505

DOWNLOAD EBOOK

The book has many important features which make it suitable for both undergraduate and postgraduate students in various branches of engineering and general and applied sciences. The important topics interrelating Mathematics & Computer Science are also covered briefly. The book is useful to readers with a wide range of backgrounds including Mathematics, Computer Science/Computer Applications and Operational Research. While dealing with theorems and algorithms, emphasis is laid on constructions which consist of formal proofs, examples with applications. Uptill, there is scarcity of books in the open literature which cover all the things including most importantly various algorithms and applications with examples.


Graph Algorithms for Data Science

Graph Algorithms for Data Science

Author: Tomaž Bratanic

Publisher: Simon and Schuster

Published: 2024-02-27

Total Pages: 350

ISBN-13: 1617299464

DOWNLOAD EBOOK

Graph Algorithms for Data Science teaches you how to construct graphs from both structured and unstructured data. You'll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.


Graphs, Algorithms, and Optimization

Graphs, Algorithms, and Optimization

Author: William Kocay

Publisher: CRC Press

Published: 2017-09-20

Total Pages: 504

ISBN-13: 135198912X

DOWNLOAD EBOOK

Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.


Graph Theory

Graph Theory

Author: Karin R Saoub

Publisher: CRC Press

Published: 2021-03-17

Total Pages: 421

ISBN-13: 0429779887

DOWNLOAD EBOOK

Graph Theory: An Introduction to Proofs, Algorithms, and Applications Graph theory is the study of interactions, conflicts, and connections. The relationship between collections of discrete objects can inform us about the overall network in which they reside, and graph theory can provide an avenue for analysis. This text, for the first undergraduate course, will explore major topics in graph theory from both a theoretical and applied viewpoint. Topics will progress from understanding basic terminology, to addressing computational questions, and finally ending with broad theoretical results. Examples and exercises will guide the reader through this progression, with particular care in strengthening proof techniques and written mathematical explanations. Current applications and exploratory exercises are provided to further the reader’s mathematical reasoning and understanding of the relevance of graph theory to the modern world. Features The first chapter introduces graph terminology, mathematical modeling using graphs, and a review of proof techniques featured throughout the book The second chapter investigates three major route problems: eulerian circuits, hamiltonian cycles, and shortest paths. The third chapter focuses entirely on trees – terminology, applications, and theory. Four additional chapters focus around a major graph concept: connectivity, matching, coloring, and planarity. Each chapter brings in a modern application or approach. Hints and Solutions to selected exercises provided at the back of the book. Author Karin R. Saoub is an Associate Professor of Mathematics at Roanoke College in Salem, Virginia. She earned her PhD in mathematics from Arizona State University and BA from Wellesley College. Her research focuses on graph coloring and on-line algorithms applied to tolerance graphs. She is also the author of A Tour Through Graph Theory, published by CRC Press.


Graph Algorithms

Graph Algorithms

Author: Mark Needham

Publisher: "O'Reilly Media, Inc."

Published: 2019-05-16

Total Pages: 297

ISBN-13: 1492047635

DOWNLOAD EBOOK

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark


A Java Library of Graph Algorithms and Optimization

A Java Library of Graph Algorithms and Optimization

Author: Hang T. Lau

Publisher: CRC Press

Published: 2006-10-20

Total Pages: 401

ISBN-13: 1584887192

DOWNLOAD EBOOK

Because of its portability and platform-independence, Java is the ideal computer programming language to use when working on graph algorithms and other mathematical programming problems. Collecting some of the most popular graph algorithms and optimization procedures, A Java Library of Graph Algorithms and Optimization provides the source code for


Digraphs

Digraphs

Author: Jorgen Bang-Jensen

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 769

ISBN-13: 1447138864

DOWNLOAD EBOOK

The study of directed graphs (digraphs) has developed enormously over recent decades, yet the results are rather scattered across the journal literature. This is the first book to present a unified and comprehensive survey of the subject. In addition to covering the theoretical aspects, the authors discuss a large number of applications and their generalizations to topics such as the traveling salesman problem, project scheduling, genetics, network connectivity, and sparse matrices. Numerous exercises are included. For all graduate students, researchers and professionals interested in graph theory and its applications, this book will be essential reading.


Guide to Graph Algorithms

Guide to Graph Algorithms

Author: K Erciyes

Publisher: Springer

Published: 2018-04-13

Total Pages: 475

ISBN-13: 3319732358

DOWNLOAD EBOOK

This clearly structured textbook/reference presents a detailed and comprehensive review of the fundamental principles of sequential graph algorithms, approaches for NP-hard graph problems, and approximation algorithms and heuristics for such problems. The work also provides a comparative analysis of sequential, parallel and distributed graph algorithms – including algorithms for big data – and an investigation into the conversion principles between the three algorithmic methods. Topics and features: presents a comprehensive analysis of sequential graph algorithms; offers a unifying view by examining the same graph problem from each of the three paradigms of sequential, parallel and distributed algorithms; describes methods for the conversion between sequential, parallel and distributed graph algorithms; surveys methods for the analysis of large graphs and complex network applications; includes full implementation details for the problems presented throughout the text; provides additional supporting material at an accompanying website. This practical guide to the design and analysis of graph algorithms is ideal for advanced and graduate students of computer science, electrical and electronic engineering, and bioinformatics. The material covered will also be of value to any researcher familiar with the basics of discrete mathematics, graph theory and algorithms.


Distributed Graph Algorithms for Computer Networks

Distributed Graph Algorithms for Computer Networks

Author: Kayhan Erciyes

Publisher: Springer Science & Business Media

Published: 2013-05-16

Total Pages: 328

ISBN-13: 1447151739

DOWNLOAD EBOOK

This book presents a comprehensive review of key distributed graph algorithms for computer network applications, with a particular emphasis on practical implementation. Topics and features: introduces a range of fundamental graph algorithms, covering spanning trees, graph traversal algorithms, routing algorithms, and self-stabilization; reviews graph-theoretical distributed approximation algorithms with applications in ad hoc wireless networks; describes in detail the implementation of each algorithm, with extensive use of supporting examples, and discusses their concrete network applications; examines key graph-theoretical algorithm concepts, such as dominating sets, and parameters for mobility and energy levels of nodes in wireless ad hoc networks, and provides a contemporary survey of each topic; presents a simple simulator, developed to run distributed algorithms; provides practical exercises at the end of each chapter.