Data Engineering with Google Cloud Platform

Data Engineering with Google Cloud Platform

Author: Adi Wijaya

Publisher: Packt Publishing Ltd

Published: 2022-03-31

Total Pages: 440

ISBN-13: 1800565062

DOWNLOAD EBOOK

Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.


Google Cloud Platform for Data Engineering

Google Cloud Platform for Data Engineering

Author: Alasdair Gilchrist

Publisher: Alasdair Gilchrist

Published:

Total Pages: 357

ISBN-13:

DOWNLOAD EBOOK

Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable.


Data Engineering with Google Cloud Platform

Data Engineering with Google Cloud Platform

Author: Adi Wijaya

Publisher: Packt Publishing Ltd

Published: 2022-03-31

Total Pages: 440

ISBN-13: 1800565062

DOWNLOAD EBOOK

Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.


Google Cloud Professional Data Engineer

Google Cloud Professional Data Engineer

Author:

Publisher: Cybellium

Published: 2024-10-26

Total Pages: 228

ISBN-13: 1836798032

DOWNLOAD EBOOK

Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com


Official Google Cloud Certified Professional Data Engineer Study Guide

Official Google Cloud Certified Professional Data Engineer Study Guide

Author: Dan Sullivan

Publisher: John Wiley & Sons

Published: 2020-06-10

Total Pages: 357

ISBN-13: 1119618436

DOWNLOAD EBOOK

The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. Build and operationalize storage systems, pipelines, and compute infrastructure Understand machine learning models and learn how to select pre-built models Monitor and troubleshoot machine learning models Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.


Data Engineering with Google Cloud Platform

Data Engineering with Google Cloud Platform

Author: Adi Wijaya

Publisher: Packt Publishing Ltd

Published: 2024-04-30

Total Pages: 476

ISBN-13: 1835085369

DOWNLOAD EBOOK

Become a successful data engineer by building and deploying your own data pipelines on Google Cloud, including making key architectural decisions Key Features Get up to speed with data governance on Google Cloud Learn how to use various Google Cloud products like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream Boost your confidence by getting Google Cloud data engineering certification guidance from real exam experiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe second edition of Data Engineering with Google Cloud builds upon the success of the first edition by offering enhanced clarity and depth to data professionals navigating the intricate landscape of data engineering. Beyond its foundational lessons, this new edition delves into the essential realm of data governance within Google Cloud, providing you with invaluable insights into managing and optimizing data resources effectively. Written by a Data Strategic Cloud Engineer at Google, this book helps you stay ahead of the curve by guiding you through the latest technological advancements in the Google Cloud ecosystem. You’ll cover essential aspects, from exploring Cloud Composer 2 to the evolution of Airflow 2.5. Additionally, you’ll explore how to work with cutting-edge tools like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream to perform data governance on datasets. By the end of this book, you'll be equipped to navigate the ever-evolving world of data engineering on Google Cloud, from foundational principles to cutting-edge practices.What you will learn Load data into BigQuery and materialize its output Focus on data pipeline orchestration using Cloud Composer Formulate Airflow jobs to orchestrate and automate a data warehouse Establish a Hadoop data lake, generate ephemeral clusters, and execute jobs on the Dataproc cluster Harness Pub/Sub for messaging and ingestion for event-driven systems Apply Dataflow to conduct ETL on streaming data Implement data governance services on Google Cloud Who this book is for Data analysts, IT practitioners, software engineers, or any data enthusiasts looking to have a successful data engineering career will find this book invaluable. Additionally, experienced data professionals who want to start using Google Cloud to build data platforms will get clear insights on how to navigate the path. Whether you're a beginner who wants to explore the fundamentals or a seasoned professional seeking to learn the latest data engineering concepts, this book is for you.


Official Google Cloud Certified Professional Data Engineer Study Guide

Official Google Cloud Certified Professional Data Engineer Study Guide

Author: Dan Sullivan

Publisher: John Wiley & Sons

Published: 2020-05-18

Total Pages: 352

ISBN-13: 1119618444

DOWNLOAD EBOOK

The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. • Build and operationalize storage systems, pipelines, and compute infrastructure • Understand machine learning models and learn how to select pre-built models • Monitor and troubleshoot machine learning models • Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.


Data Analytics with Google Cloud Platform

Data Analytics with Google Cloud Platform

Author: Murari Ramuka

Publisher: BPB Publications

Published: 2019-12-16

Total Pages: 287

ISBN-13: 9389423635

DOWNLOAD EBOOK

Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples


Google Cloud Certified Associate Cloud Engineer All-in-One Exam Guide

Google Cloud Certified Associate Cloud Engineer All-in-One Exam Guide

Author: Jack Hyman

Publisher: McGraw Hill Professional

Published: 2020-11-05

Total Pages: 369

ISBN-13: 1260473465

DOWNLOAD EBOOK

This study guide offers 100% coverage of every objective for the Google Cloud Certified Associate Cloud Engineer exam Take the challenging Google Cloud Certified Associate Cloud Engineer exam with confidence using the comprehensive information contained in this effective self-study guide. The book serves as an introduction to Google Cloud Platform (GCP) and shows you how to pass the test. Beyond exam preparation, the guide also serves as a valuable on-the-job reference. Written by a recognized expert in the field, Google Cloud Certified Associate Cloud Engineer All-In-One Exam Guide is based on proven pedagogy and features special elements that teach and reinforce practical skills. The book contains accurate practice questions and detailed explanations. You will discover how to plan set up, and configure GCP; ensure effective operation; and administer access and security. Covers every topic on the exam—demonstrated through exercises, sample exams, and practice use cases Provides online access to TotalTester customizable exam engine with additional practice questions Written by a cloud computing expert, educator, and experienced author