Global Lorentzian Geometry

Global Lorentzian Geometry

Author: John K. Beem

Publisher: Routledge

Published: 2017-09-29

Total Pages: 660

ISBN-13: 1351444700

DOWNLOAD EBOOK

Bridging the gap between modern differential geometry and the mathematical physics of general relativity, this text, in its second edition, includes new and expanded material on topics such as the instability of both geodesic completeness and geodesic incompleteness for general space-times, geodesic connectibility, the generic condition, the sectional curvature function in a neighbourhood of degenerate two-plane, and proof of the Lorentzian Splitting Theorem.;Five or more copies may be ordered by college or university stores at a special student price, available on request.


Lorentzian Geometry and Related Topics

Lorentzian Geometry and Related Topics

Author: María A. Cañadas-Pinedo

Publisher: Springer

Published: 2018-03-06

Total Pages: 278

ISBN-13: 3319662902

DOWNLOAD EBOOK

This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathematics and physics. This book is addressed to differential geometers, mathematical physicists and relativists, and graduate students interested in the field.


Global Lorentzian Geometry

Global Lorentzian Geometry

Author: John K. Beem

Publisher: Routledge

Published: 2017-09-29

Total Pages: 656

ISBN-13: 1351444719

DOWNLOAD EBOOK

Bridging the gap between modern differential geometry and the mathematical physics of general relativity, this text, in its second edition, includes new and expanded material on topics such as the instability of both geodesic completeness and geodesic incompleteness for general space-times, geodesic connectibility, the generic condition, the sectional curvature function in a neighbourhood of degenerate two-plane, and proof of the Lorentzian Splitting Theorem.;Five or more copies may be ordered by college or university stores at a special student price, available on request.


Introduction to Lorentz Geometry

Introduction to Lorentz Geometry

Author: Ivo Terek Couto

Publisher: CRC Press

Published: 2021-01-05

Total Pages: 351

ISBN-13: 1000223345

DOWNLOAD EBOOK

Lorentz Geometry is a very important intersection between Mathematics and Physics, being the mathematical language of General Relativity. Learning this type of geometry is the first step in properly understanding questions regarding the structure of the universe, such as: What is the shape of the universe? What is a spacetime? What is the relation between gravity and curvature? Why exactly is time treated in a different manner than other spatial dimensions? Introduction to Lorentz Geometry: Curves and Surfaces intends to provide the reader with the minimum mathematical background needed to pursue these very interesting questions, by presenting the classical theory of curves and surfaces in both Euclidean and Lorentzian ambient spaces simultaneously. Features: Over 300 exercises Suitable for senior undergraduates and graduates studying Mathematics and Physics Written in an accessible style without loss of precision or mathematical rigor Solution manual available on www.routledge.com/9780367468644


Global Differential Geometry

Global Differential Geometry

Author: Christian Bär

Publisher: Springer Science & Business Media

Published: 2011-12-18

Total Pages: 520

ISBN-13: 3642228429

DOWNLOAD EBOOK

This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.


Semi-Riemannian Geometry With Applications to Relativity

Semi-Riemannian Geometry With Applications to Relativity

Author: Barrett O'Neill

Publisher: Academic Press

Published: 1983-07-29

Total Pages: 483

ISBN-13: 0080570577

DOWNLOAD EBOOK

This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.


Wave Equations on Lorentzian Manifolds and Quantization

Wave Equations on Lorentzian Manifolds and Quantization

Author: Christian Bär

Publisher: European Mathematical Society

Published: 2007

Total Pages: 208

ISBN-13: 9783037190371

DOWNLOAD EBOOK

This book provides a detailed introduction to linear wave equations on Lorentzian manifolds (for vector-bundle valued fields). After a collection of preliminary material in the first chapter, one finds in the second chapter the construction of local fundamental solutions together with their Hadamard expansion. The third chapter establishes the existence and uniqueness of global fundamental solutions on globally hyperbolic spacetimes and discusses Green's operators and well-posedness of the Cauchy problem. The last chapter is devoted to field quantization in the sense of algebraic quantum field theory. The necessary basics on $C^*$-algebras and CCR-representations are developed in full detail. The text provides a self-contained introduction to these topics addressed to graduate students in mathematics and physics. At the same time, it is intended as a reference for researchers in global analysis, general relativity, and quantum field theory.


An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry

Author: Leonor Godinho

Publisher: Springer

Published: 2014-07-26

Total Pages: 476

ISBN-13: 3319086669

DOWNLOAD EBOOK

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.


Quantum Field Theory on Curved Spacetimes

Quantum Field Theory on Curved Spacetimes

Author: Christian Bär

Publisher: Springer

Published: 2009-09-18

Total Pages: 167

ISBN-13: 3642027806

DOWNLOAD EBOOK

After some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected. There, to first approximation, one is left with the problem of quantum field theory on Lorentzian manifolds. Surprisingly, this seemingly modest approach leads to far reaching conceptual and mathematical problems and to spectacular predictions, the most famous one being the Hawking radiation of black holes. Ingredients of this approach are the formulation of quantum physics in terms of C*-algebras, the geometry of Lorentzian manifolds, in particular their causal structure, and linear hyperbolic differential equations where the well-posedness of the Cauchy problem plays a distinguished role, as well as more recently the insights from suitable concepts such as microlocal analysis. This primer is an outgrowth of a compact course given by the editors and contributing authors to an audience of advanced graduate students and young researchers in the field, and assumes working knowledge of differential geometry and functional analysis on the part of the reader.